SlideShare a Scribd company logo
The Data Platform Administration
Handling the 100 PB
May 19th, 2022
Yongduck Lee
Cloud Platform Department
Rakuten Group, Inc.
2
About me
Lecture History
- Colloquium Lecturer at KAIST
Program Committee
- BigComp2017/2019
- EDB 2016
Certification
- Certified Scrum Master (CSM)
- Certified Project Management Professional (PMP #1255421)
… ETC
Lee Yongduck Daniel
A Vice Section Manager and Senior Architect at Data Storage and
Processing Section in Rakuten Group, Inc.
Started as Recommendation Engine Developer and now is focusing on
researching and verifying new Big Data Technology and how to support
users who want to use Big Data System.
B.Sc in Korea University in 2001.
21 years in Japan and have been worked for many organization and
company such as NHK, NTTD and Rakuten Group, Inc.
3
CONTENTS
1. Global Internet & Data Explosion
2. Data in Rakuten
3. Data platform & Big Data Administrator in Rakuten
4. What Advantages as Engineer in Rakuten
4
Internet & Globalization
The Internet is the global system of interconnected computer networks that use the Internet protocol
suite (TCP/IP) to link devices worldwide. It is a network of networks that consists of private, public, academic,
business, and government networks of local to global scope, linked by a broad array of electronic, wireless,
and optical networking technologies
G
C
Vast
Unstructured 80%
Structured 20%
35.2 ZB in 2020
The origins of the Internet date back to research
commissioned by the federal government of the
United States in the 1960s to build robust, fault-
tolerant communication with computer networks.
https://en.wikipedia.org/wiki/Internet#World_Wide_Web
* From IDC white paper & EMC
hances
Lobalization
Information
Structure Volume
5
Internet Users
Internet users are defined as persons who accessed the Internet in the last 12 months from any device,
including mobile phones.
https://en.wikipedia.org/wiki/List_of_countries_by_number_of_Internet_users#cite_note-UN_WPP-14
6
Internet Users
https://en.wikipedia.org/wiki/List_of_countries_by_number_of_Internet_users#cite_note-UN_WPP-14
In Japan 92.3% are using Internet ( Population 127,202,192 / Internet Users 117,400,000 )
At 2018
7
8
9
The Big Data in Rakuten
There are huge potential value and possibilities due to Diversity of Service and Users not
only from Japan but also Global. It is very interesting and ideal environment for Data
Scientiest and Data Analyst.
Increase synergy effect on personalization, clustering, segmentation, etc. by combining
data from various services.
The large volume of data every day, every month, and every year from services and users.
It is a big challenge to store data and make it easy to utilize for data users as System
Infrastructure Engineer and Data Engineer.
Diversity and Synergy
Scale
10
Rakuten Hadoop and Kafka
Supporting near-realtime & streaming processing in
each region.
Handling data totally around 1.3 Million Message/sec
( 10 GB/sec IN/OUT) around peak time at normal
date.
At 2021 Super Sale, we handled more than 2.5 times
messages and traffics.
Supporting Data Lake, Data Mart, and Data Analysis
for Rakuten Service in each region.
Lots of value mining from big data are being done by
data scientist and contributing on Rakuten Service.
Kafka: 800 Core, 20TB Mem, 4728 Topics
Hadoop : 80K Core, 600 TB Mem, 160K TB Disk
11
The Challenge on Administration
12
The Big Data in Rakuten
Platform/Middleware
Administrator
Users
Project/Product
Manager
Big Data Platform
Administrator
Infra/Server
Administrator
Network
Administrator
Software/System
Architect
Software
Developer
13
Administration Use CASE (HBase)
User reported performance issues on HBase but there were no issues or report from other users who are using
other component on Hadoop.
Confirm Way to get/put data on HBase
• HBase
Configuration
Architecture, Work/Dataflow.
Application/GC Logs
• Dependency Component (*HDFS)
READ/Write Performance Logs
Application/GC Logs
• DISK/Mem/CPU Load
• Kernel Log
• Network Connection
Date
&
Time
Matching
Data Hot Spotting.
Data or Configuration Caching
HDFS
JVM Config change
Increasing Handler
Increasing Scanner Interval
HW Improvement
Master Node Replacement
Reduced RegionServers
Move HDD to NVMe
Dedicated RegionServers
OS Configuration
Root noprocs, nofiles increasing on Dedicated RS
HBASE
TCPNoDelay, Parallel Seeking , Master Table Locality
WRITE/Short-READ/Long-READ Queue
DEADLINE Scheduler, Hedged Reads, Short Circuit READ
14
What Advantages in Rakuten as Data Engineer
You can go through all necessary domains of Big Data Platform to get rich experience for Big Data Platform
Administrators. Rakuten has experts who have rich knowledges and experiences on each technical and
management domain.
15
What Advantages in Rakuten as Data Engineer
You can also work with various stakeholders from various service domain, from the point of data utilization.
DB
Services
Event
INFRA
…
The Data Platform Administration Handling the 100 PB.pdf
Ad

More Related Content

What's hot (20)

大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開
Rakuten Group, Inc.
 
モニタリングプラットフォーム開発の裏側
モニタリングプラットフォーム開発の裏側モニタリングプラットフォーム開発の裏側
モニタリングプラットフォーム開発の裏側
Rakuten Group, Inc.
 
楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー
Rakuten Group, Inc.
 
Rakuten Platform
Rakuten PlatformRakuten Platform
Rakuten Platform
Rakuten Group, Inc.
 
Kafka & Hadoop in Rakuten
Kafka & Hadoop in RakutenKafka & Hadoop in Rakuten
Kafka & Hadoop in Rakuten
Rakuten Group, Inc.
 
Supporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdfSupporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdf
Rakuten Group, Inc.
 
Apache Spark on Kubernetes入門(Open Source Conference 2021 Online Hiroshima 発表資料)
Apache Spark on Kubernetes入門(Open Source Conference 2021 Online Hiroshima 発表資料)Apache Spark on Kubernetes入門(Open Source Conference 2021 Online Hiroshima 発表資料)
Apache Spark on Kubernetes入門(Open Source Conference 2021 Online Hiroshima 発表資料)
NTT DATA Technology & Innovation
 
楽天サービスとインフラ部隊
楽天サービスとインフラ部隊楽天サービスとインフラ部隊
楽天サービスとインフラ部隊
Rakuten Group, Inc.
 
Introduction of Rakuten Commerce QA Night#2
Introduction of Rakuten Commerce QA Night#2Introduction of Rakuten Commerce QA Night#2
Introduction of Rakuten Commerce QA Night#2
Rakuten Group, Inc.
 
PGOを用いたPostgreSQL on Kubernetes入門(PostgreSQL Conference Japan 2022 発表資料)
PGOを用いたPostgreSQL on Kubernetes入門(PostgreSQL Conference Japan 2022 発表資料)PGOを用いたPostgreSQL on Kubernetes入門(PostgreSQL Conference Japan 2022 発表資料)
PGOを用いたPostgreSQL on Kubernetes入門(PostgreSQL Conference Japan 2022 発表資料)
NTT DATA Technology & Innovation
 
GraalVMの多言語実行機能が凄そうだったので試しにApache Sparkに組み込んで動かしてみたけどちょっとまだ早かったかもしれない(Open So...
GraalVMの多言語実行機能が凄そうだったので試しにApache Sparkに組み込んで動かしてみたけどちょっとまだ早かったかもしれない(Open So...GraalVMの多言語実行機能が凄そうだったので試しにApache Sparkに組み込んで動かしてみたけどちょっとまだ早かったかもしれない(Open So...
GraalVMの多言語実行機能が凄そうだったので試しにApache Sparkに組み込んで動かしてみたけどちょっとまだ早かったかもしれない(Open So...
NTT DATA Technology & Innovation
 
どうやって決める?kubernetesでのシークレット管理方法(Cloud Native Days 2020 発表資料)
どうやって決める?kubernetesでのシークレット管理方法(Cloud Native Days 2020 発表資料)どうやって決める?kubernetesでのシークレット管理方法(Cloud Native Days 2020 発表資料)
どうやって決める?kubernetesでのシークレット管理方法(Cloud Native Days 2020 発表資料)
NTT DATA Technology & Innovation
 
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
NTT DATA OSS Professional Services
 
Oracle jdk 20190827 - 今、あらためてOracle提供のJDKを語る
Oracle jdk 20190827 - 今、あらためてOracle提供のJDKを語るOracle jdk 20190827 - 今、あらためてOracle提供のJDKを語る
Oracle jdk 20190827 - 今、あらためてOracle提供のJDKを語る
オラクルエンジニア通信
 
チームトポロジーから学び、 データプラットフォーム組織を考え直した話.pptx
チームトポロジーから学び、 データプラットフォーム組織を考え直した話.pptxチームトポロジーから学び、 データプラットフォーム組織を考え直した話.pptx
チームトポロジーから学び、 データプラットフォーム組織を考え直した話.pptx
Rakuten Commerce Tech (Rakuten Group, Inc.)
 
PostgreSQLをKubernetes上で活用するためのOperator紹介!(Cloud Native Database Meetup #3 発表資料)
PostgreSQLをKubernetes上で活用するためのOperator紹介!(Cloud Native Database Meetup #3 発表資料)PostgreSQLをKubernetes上で活用するためのOperator紹介!(Cloud Native Database Meetup #3 発表資料)
PostgreSQLをKubernetes上で活用するためのOperator紹介!(Cloud Native Database Meetup #3 発表資料)
NTT DATA Technology & Innovation
 
ぐるなびが活用するElastic Cloud
ぐるなびが活用するElastic Cloudぐるなびが活用するElastic Cloud
ぐるなびが活用するElastic Cloud
Elasticsearch
 
Apache Bigtop3.2 (仮)(Open Source Conference 2022 Online/Hiroshima 発表資料)
Apache Bigtop3.2 (仮)(Open Source Conference 2022 Online/Hiroshima 発表資料)Apache Bigtop3.2 (仮)(Open Source Conference 2022 Online/Hiroshima 発表資料)
Apache Bigtop3.2 (仮)(Open Source Conference 2022 Online/Hiroshima 発表資料)
NTT DATA Technology & Innovation
 
Spring Cloud Data Flow の紹介 #streamctjp
Spring Cloud Data Flow の紹介  #streamctjpSpring Cloud Data Flow の紹介  #streamctjp
Spring Cloud Data Flow の紹介 #streamctjp
Yahoo!デベロッパーネットワーク
 
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Preferred Networks
 
大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開
Rakuten Group, Inc.
 
モニタリングプラットフォーム開発の裏側
モニタリングプラットフォーム開発の裏側モニタリングプラットフォーム開発の裏側
モニタリングプラットフォーム開発の裏側
Rakuten Group, Inc.
 
楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー
Rakuten Group, Inc.
 
Supporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdfSupporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdf
Rakuten Group, Inc.
 
Apache Spark on Kubernetes入門(Open Source Conference 2021 Online Hiroshima 発表資料)
Apache Spark on Kubernetes入門(Open Source Conference 2021 Online Hiroshima 発表資料)Apache Spark on Kubernetes入門(Open Source Conference 2021 Online Hiroshima 発表資料)
Apache Spark on Kubernetes入門(Open Source Conference 2021 Online Hiroshima 発表資料)
NTT DATA Technology & Innovation
 
楽天サービスとインフラ部隊
楽天サービスとインフラ部隊楽天サービスとインフラ部隊
楽天サービスとインフラ部隊
Rakuten Group, Inc.
 
Introduction of Rakuten Commerce QA Night#2
Introduction of Rakuten Commerce QA Night#2Introduction of Rakuten Commerce QA Night#2
Introduction of Rakuten Commerce QA Night#2
Rakuten Group, Inc.
 
PGOを用いたPostgreSQL on Kubernetes入門(PostgreSQL Conference Japan 2022 発表資料)
PGOを用いたPostgreSQL on Kubernetes入門(PostgreSQL Conference Japan 2022 発表資料)PGOを用いたPostgreSQL on Kubernetes入門(PostgreSQL Conference Japan 2022 発表資料)
PGOを用いたPostgreSQL on Kubernetes入門(PostgreSQL Conference Japan 2022 発表資料)
NTT DATA Technology & Innovation
 
GraalVMの多言語実行機能が凄そうだったので試しにApache Sparkに組み込んで動かしてみたけどちょっとまだ早かったかもしれない(Open So...
GraalVMの多言語実行機能が凄そうだったので試しにApache Sparkに組み込んで動かしてみたけどちょっとまだ早かったかもしれない(Open So...GraalVMの多言語実行機能が凄そうだったので試しにApache Sparkに組み込んで動かしてみたけどちょっとまだ早かったかもしれない(Open So...
GraalVMの多言語実行機能が凄そうだったので試しにApache Sparkに組み込んで動かしてみたけどちょっとまだ早かったかもしれない(Open So...
NTT DATA Technology & Innovation
 
どうやって決める?kubernetesでのシークレット管理方法(Cloud Native Days 2020 発表資料)
どうやって決める?kubernetesでのシークレット管理方法(Cloud Native Days 2020 発表資料)どうやって決める?kubernetesでのシークレット管理方法(Cloud Native Days 2020 発表資料)
どうやって決める?kubernetesでのシークレット管理方法(Cloud Native Days 2020 発表資料)
NTT DATA Technology & Innovation
 
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
Apache Kafkaって本当に大丈夫?~故障検証のオーバービューと興味深い挙動の紹介~
NTT DATA OSS Professional Services
 
Oracle jdk 20190827 - 今、あらためてOracle提供のJDKを語る
Oracle jdk 20190827 - 今、あらためてOracle提供のJDKを語るOracle jdk 20190827 - 今、あらためてOracle提供のJDKを語る
Oracle jdk 20190827 - 今、あらためてOracle提供のJDKを語る
オラクルエンジニア通信
 
チームトポロジーから学び、 データプラットフォーム組織を考え直した話.pptx
チームトポロジーから学び、 データプラットフォーム組織を考え直した話.pptxチームトポロジーから学び、 データプラットフォーム組織を考え直した話.pptx
チームトポロジーから学び、 データプラットフォーム組織を考え直した話.pptx
Rakuten Commerce Tech (Rakuten Group, Inc.)
 
PostgreSQLをKubernetes上で活用するためのOperator紹介!(Cloud Native Database Meetup #3 発表資料)
PostgreSQLをKubernetes上で活用するためのOperator紹介!(Cloud Native Database Meetup #3 発表資料)PostgreSQLをKubernetes上で活用するためのOperator紹介!(Cloud Native Database Meetup #3 発表資料)
PostgreSQLをKubernetes上で活用するためのOperator紹介!(Cloud Native Database Meetup #3 発表資料)
NTT DATA Technology & Innovation
 
ぐるなびが活用するElastic Cloud
ぐるなびが活用するElastic Cloudぐるなびが活用するElastic Cloud
ぐるなびが活用するElastic Cloud
Elasticsearch
 
Apache Bigtop3.2 (仮)(Open Source Conference 2022 Online/Hiroshima 発表資料)
Apache Bigtop3.2 (仮)(Open Source Conference 2022 Online/Hiroshima 発表資料)Apache Bigtop3.2 (仮)(Open Source Conference 2022 Online/Hiroshima 発表資料)
Apache Bigtop3.2 (仮)(Open Source Conference 2022 Online/Hiroshima 発表資料)
NTT DATA Technology & Innovation
 
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Preferred Networks
 

Similar to The Data Platform Administration Handling the 100 PB.pdf (20)

Jak konsolidovat Vaše databáze s využitím Cloud služeb?
Jak konsolidovat Vaše databáze s využitím Cloud služeb?Jak konsolidovat Vaše databáze s využitím Cloud služeb?
Jak konsolidovat Vaše databáze s využitím Cloud služeb?
MarketingArrowECS_CZ
 
The Growth Of Data Centers
The Growth Of Data CentersThe Growth Of Data Centers
The Growth Of Data Centers
Gina Buck
 
IRJET- A Comparative Study on Big Data Analytics Approaches and Tools
IRJET- A Comparative Study on Big Data Analytics Approaches and ToolsIRJET- A Comparative Study on Big Data Analytics Approaches and Tools
IRJET- A Comparative Study on Big Data Analytics Approaches and Tools
IRJET Journal
 
MapR and Cisco Make IT Better
MapR and Cisco Make IT BetterMapR and Cisco Make IT Better
MapR and Cisco Make IT Better
MapR Technologies
 
Big data - what, why, where, when and how
Big data - what, why, where, when and howBig data - what, why, where, when and how
Big data - what, why, where, when and how
bobosenthil
 
592-1627-1-PB
592-1627-1-PB592-1627-1-PB
592-1627-1-PB
Kamal Jyoti
 
Machine Learning for z/OS
Machine Learning for z/OSMachine Learning for z/OS
Machine Learning for z/OS
Cuneyt Goksu
 
Bigdata-Intro.pptx
Bigdata-Intro.pptxBigdata-Intro.pptx
Bigdata-Intro.pptx
smitasatpathy2
 
Introducing Events and Stream Processing into Nationwide Building Society
Introducing Events and Stream Processing into Nationwide Building SocietyIntroducing Events and Stream Processing into Nationwide Building Society
Introducing Events and Stream Processing into Nationwide Building Society
confluent
 
Qo Introduction V2
Qo Introduction V2Qo Introduction V2
Qo Introduction V2
Joe_F
 
Idc analyst report a new breed of servers for digital transformation
Idc analyst report a new breed of servers for digital transformationIdc analyst report a new breed of servers for digital transformation
Idc analyst report a new breed of servers for digital transformation
Kaizenlogcom
 
Denodo DataFest 2016: The Role of Data Virtualization in IoT Integration
Denodo DataFest 2016: The Role of Data Virtualization in IoT IntegrationDenodo DataFest 2016: The Role of Data Virtualization in IoT Integration
Denodo DataFest 2016: The Role of Data Virtualization in IoT Integration
Denodo
 
Deploying cost effective cloud data center
Deploying cost effective cloud data centerDeploying cost effective cloud data center
Deploying cost effective cloud data center
Wiudo Laos
 
Oracle databáze - zkonsolidovat, ochránit a ještě ušetřit! (1. část)
Oracle databáze - zkonsolidovat, ochránit a ještě ušetřit! (1. část)Oracle databáze - zkonsolidovat, ochránit a ještě ušetřit! (1. část)
Oracle databáze - zkonsolidovat, ochránit a ještě ušetřit! (1. část)
MarketingArrowECS_CZ
 
Virtual Machine Allocation Policy in Cloud Computing Environment using CloudSim
Virtual Machine Allocation Policy in Cloud Computing Environment using CloudSim Virtual Machine Allocation Policy in Cloud Computing Environment using CloudSim
Virtual Machine Allocation Policy in Cloud Computing Environment using CloudSim
IJECEIAES
 
Modern Data Management for Federal Modernization
Modern Data Management for Federal ModernizationModern Data Management for Federal Modernization
Modern Data Management for Federal Modernization
Denodo
 
Big Data with Hadoop – For Data Management, Processing and Storing
Big Data with Hadoop – For Data Management, Processing and StoringBig Data with Hadoop – For Data Management, Processing and Storing
Big Data with Hadoop – For Data Management, Processing and Storing
IRJET Journal
 
IRJET- Systematic Review: Progression Study on BIG DATA articles
IRJET- Systematic Review: Progression Study on BIG DATA articlesIRJET- Systematic Review: Progression Study on BIG DATA articles
IRJET- Systematic Review: Progression Study on BIG DATA articles
IRJET Journal
 
Resume (1)
Resume (1)Resume (1)
Resume (1)
naveenreddytamma
 
Resume (1)
Resume (1)Resume (1)
Resume (1)
naveenreddytamma
 
Jak konsolidovat Vaše databáze s využitím Cloud služeb?
Jak konsolidovat Vaše databáze s využitím Cloud služeb?Jak konsolidovat Vaše databáze s využitím Cloud služeb?
Jak konsolidovat Vaše databáze s využitím Cloud služeb?
MarketingArrowECS_CZ
 
The Growth Of Data Centers
The Growth Of Data CentersThe Growth Of Data Centers
The Growth Of Data Centers
Gina Buck
 
IRJET- A Comparative Study on Big Data Analytics Approaches and Tools
IRJET- A Comparative Study on Big Data Analytics Approaches and ToolsIRJET- A Comparative Study on Big Data Analytics Approaches and Tools
IRJET- A Comparative Study on Big Data Analytics Approaches and Tools
IRJET Journal
 
MapR and Cisco Make IT Better
MapR and Cisco Make IT BetterMapR and Cisco Make IT Better
MapR and Cisco Make IT Better
MapR Technologies
 
Big data - what, why, where, when and how
Big data - what, why, where, when and howBig data - what, why, where, when and how
Big data - what, why, where, when and how
bobosenthil
 
Machine Learning for z/OS
Machine Learning for z/OSMachine Learning for z/OS
Machine Learning for z/OS
Cuneyt Goksu
 
Introducing Events and Stream Processing into Nationwide Building Society
Introducing Events and Stream Processing into Nationwide Building SocietyIntroducing Events and Stream Processing into Nationwide Building Society
Introducing Events and Stream Processing into Nationwide Building Society
confluent
 
Qo Introduction V2
Qo Introduction V2Qo Introduction V2
Qo Introduction V2
Joe_F
 
Idc analyst report a new breed of servers for digital transformation
Idc analyst report a new breed of servers for digital transformationIdc analyst report a new breed of servers for digital transformation
Idc analyst report a new breed of servers for digital transformation
Kaizenlogcom
 
Denodo DataFest 2016: The Role of Data Virtualization in IoT Integration
Denodo DataFest 2016: The Role of Data Virtualization in IoT IntegrationDenodo DataFest 2016: The Role of Data Virtualization in IoT Integration
Denodo DataFest 2016: The Role of Data Virtualization in IoT Integration
Denodo
 
Deploying cost effective cloud data center
Deploying cost effective cloud data centerDeploying cost effective cloud data center
Deploying cost effective cloud data center
Wiudo Laos
 
Oracle databáze - zkonsolidovat, ochránit a ještě ušetřit! (1. část)
Oracle databáze - zkonsolidovat, ochránit a ještě ušetřit! (1. část)Oracle databáze - zkonsolidovat, ochránit a ještě ušetřit! (1. část)
Oracle databáze - zkonsolidovat, ochránit a ještě ušetřit! (1. část)
MarketingArrowECS_CZ
 
Virtual Machine Allocation Policy in Cloud Computing Environment using CloudSim
Virtual Machine Allocation Policy in Cloud Computing Environment using CloudSim Virtual Machine Allocation Policy in Cloud Computing Environment using CloudSim
Virtual Machine Allocation Policy in Cloud Computing Environment using CloudSim
IJECEIAES
 
Modern Data Management for Federal Modernization
Modern Data Management for Federal ModernizationModern Data Management for Federal Modernization
Modern Data Management for Federal Modernization
Denodo
 
Big Data with Hadoop – For Data Management, Processing and Storing
Big Data with Hadoop – For Data Management, Processing and StoringBig Data with Hadoop – For Data Management, Processing and Storing
Big Data with Hadoop – For Data Management, Processing and Storing
IRJET Journal
 
IRJET- Systematic Review: Progression Study on BIG DATA articles
IRJET- Systematic Review: Progression Study on BIG DATA articlesIRJET- Systematic Review: Progression Study on BIG DATA articles
IRJET- Systematic Review: Progression Study on BIG DATA articles
IRJET Journal
 
Ad

More from Rakuten Group, Inc. (14)

EPSS (Exploit Prediction Scoring System)モニタリングツールの開発
EPSS (Exploit Prediction Scoring System)モニタリングツールの開発EPSS (Exploit Prediction Scoring System)モニタリングツールの開発
EPSS (Exploit Prediction Scoring System)モニタリングツールの開発
Rakuten Group, Inc.
 
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
Rakuten Group, Inc.
 
楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり
Rakuten Group, Inc.
 
What Makes Software Green?
What Makes Software Green?What Makes Software Green?
What Makes Software Green?
Rakuten Group, Inc.
 
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Rakuten Group, Inc.
 
DataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組みDataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組み
Rakuten Group, Inc.
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
Rakuten Group, Inc.
 
OWASPTop10_Introduction
OWASPTop10_IntroductionOWASPTop10_Introduction
OWASPTop10_Introduction
Rakuten Group, Inc.
 
Introduction of GORA API Group technology
Introduction of GORA API Group technologyIntroduction of GORA API Group technology
Introduction of GORA API Group technology
Rakuten Group, Inc.
 
社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャー社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャー
Rakuten Group, Inc.
 
Unclouding Container Challenges
 Unclouding  Container Challenges Unclouding  Container Challenges
Unclouding Container Challenges
Rakuten Group, Inc.
 
Functional Programming in Pattern-Match-Oriented Programming Style <Programmi...
Functional Programming in Pattern-Match-Oriented Programming Style <Programmi...Functional Programming in Pattern-Match-Oriented Programming Style <Programmi...
Functional Programming in Pattern-Match-Oriented Programming Style <Programmi...
Rakuten Group, Inc.
 
アジャイル開発とメトリクス
アジャイル開発とメトリクスアジャイル開発とメトリクス
アジャイル開発とメトリクス
Rakuten Group, Inc.
 
AR/SLAM and IoT
AR/SLAM and IoTAR/SLAM and IoT
AR/SLAM and IoT
Rakuten Group, Inc.
 
EPSS (Exploit Prediction Scoring System)モニタリングツールの開発
EPSS (Exploit Prediction Scoring System)モニタリングツールの開発EPSS (Exploit Prediction Scoring System)モニタリングツールの開発
EPSS (Exploit Prediction Scoring System)モニタリングツールの開発
Rakuten Group, Inc.
 
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
Rakuten Group, Inc.
 
楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり
Rakuten Group, Inc.
 
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Rakuten Group, Inc.
 
DataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組みDataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組み
Rakuten Group, Inc.
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
Rakuten Group, Inc.
 
Introduction of GORA API Group technology
Introduction of GORA API Group technologyIntroduction of GORA API Group technology
Introduction of GORA API Group technology
Rakuten Group, Inc.
 
社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャー社内エンジニアを支えるテクニカルアカウントマネージャー
社内エンジニアを支えるテクニカルアカウントマネージャー
Rakuten Group, Inc.
 
Unclouding Container Challenges
 Unclouding  Container Challenges Unclouding  Container Challenges
Unclouding Container Challenges
Rakuten Group, Inc.
 
Functional Programming in Pattern-Match-Oriented Programming Style <Programmi...
Functional Programming in Pattern-Match-Oriented Programming Style <Programmi...Functional Programming in Pattern-Match-Oriented Programming Style <Programmi...
Functional Programming in Pattern-Match-Oriented Programming Style <Programmi...
Rakuten Group, Inc.
 
アジャイル開発とメトリクス
アジャイル開発とメトリクスアジャイル開発とメトリクス
アジャイル開発とメトリクス
Rakuten Group, Inc.
 
Ad

Recently uploaded (20)

Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 

The Data Platform Administration Handling the 100 PB.pdf

  • 1. The Data Platform Administration Handling the 100 PB May 19th, 2022 Yongduck Lee Cloud Platform Department Rakuten Group, Inc.
  • 2. 2 About me Lecture History - Colloquium Lecturer at KAIST Program Committee - BigComp2017/2019 - EDB 2016 Certification - Certified Scrum Master (CSM) - Certified Project Management Professional (PMP #1255421) … ETC Lee Yongduck Daniel A Vice Section Manager and Senior Architect at Data Storage and Processing Section in Rakuten Group, Inc. Started as Recommendation Engine Developer and now is focusing on researching and verifying new Big Data Technology and how to support users who want to use Big Data System. B.Sc in Korea University in 2001. 21 years in Japan and have been worked for many organization and company such as NHK, NTTD and Rakuten Group, Inc.
  • 3. 3 CONTENTS 1. Global Internet & Data Explosion 2. Data in Rakuten 3. Data platform & Big Data Administrator in Rakuten 4. What Advantages as Engineer in Rakuten
  • 4. 4 Internet & Globalization The Internet is the global system of interconnected computer networks that use the Internet protocol suite (TCP/IP) to link devices worldwide. It is a network of networks that consists of private, public, academic, business, and government networks of local to global scope, linked by a broad array of electronic, wireless, and optical networking technologies G C Vast Unstructured 80% Structured 20% 35.2 ZB in 2020 The origins of the Internet date back to research commissioned by the federal government of the United States in the 1960s to build robust, fault- tolerant communication with computer networks. https://en.wikipedia.org/wiki/Internet#World_Wide_Web * From IDC white paper & EMC hances Lobalization Information Structure Volume
  • 5. 5 Internet Users Internet users are defined as persons who accessed the Internet in the last 12 months from any device, including mobile phones. https://en.wikipedia.org/wiki/List_of_countries_by_number_of_Internet_users#cite_note-UN_WPP-14
  • 7. 7
  • 8. 8
  • 9. 9 The Big Data in Rakuten There are huge potential value and possibilities due to Diversity of Service and Users not only from Japan but also Global. It is very interesting and ideal environment for Data Scientiest and Data Analyst. Increase synergy effect on personalization, clustering, segmentation, etc. by combining data from various services. The large volume of data every day, every month, and every year from services and users. It is a big challenge to store data and make it easy to utilize for data users as System Infrastructure Engineer and Data Engineer. Diversity and Synergy Scale
  • 10. 10 Rakuten Hadoop and Kafka Supporting near-realtime & streaming processing in each region. Handling data totally around 1.3 Million Message/sec ( 10 GB/sec IN/OUT) around peak time at normal date. At 2021 Super Sale, we handled more than 2.5 times messages and traffics. Supporting Data Lake, Data Mart, and Data Analysis for Rakuten Service in each region. Lots of value mining from big data are being done by data scientist and contributing on Rakuten Service. Kafka: 800 Core, 20TB Mem, 4728 Topics Hadoop : 80K Core, 600 TB Mem, 160K TB Disk
  • 11. 11 The Challenge on Administration
  • 12. 12 The Big Data in Rakuten Platform/Middleware Administrator Users Project/Product Manager Big Data Platform Administrator Infra/Server Administrator Network Administrator Software/System Architect Software Developer
  • 13. 13 Administration Use CASE (HBase) User reported performance issues on HBase but there were no issues or report from other users who are using other component on Hadoop. Confirm Way to get/put data on HBase • HBase Configuration Architecture, Work/Dataflow. Application/GC Logs • Dependency Component (*HDFS) READ/Write Performance Logs Application/GC Logs • DISK/Mem/CPU Load • Kernel Log • Network Connection Date & Time Matching Data Hot Spotting. Data or Configuration Caching HDFS JVM Config change Increasing Handler Increasing Scanner Interval HW Improvement Master Node Replacement Reduced RegionServers Move HDD to NVMe Dedicated RegionServers OS Configuration Root noprocs, nofiles increasing on Dedicated RS HBASE TCPNoDelay, Parallel Seeking , Master Table Locality WRITE/Short-READ/Long-READ Queue DEADLINE Scheduler, Hedged Reads, Short Circuit READ
  • 14. 14 What Advantages in Rakuten as Data Engineer You can go through all necessary domains of Big Data Platform to get rich experience for Big Data Platform Administrators. Rakuten has experts who have rich knowledges and experiences on each technical and management domain.
  • 15. 15 What Advantages in Rakuten as Data Engineer You can also work with various stakeholders from various service domain, from the point of data utilization. DB Services Event INFRA …