The document presents a common fixed point theorem for a sequence of self maps satisfying a generalized contractive condition in a non-normal cone metric space. It begins with introducing concepts such as cone metric spaces, normal and non-normal cones, and generalized contraction mappings. It then proves the main theorem: if a sequence of self maps {Tn} on a complete cone metric space X satisfies a generalized contractive condition with constants α, β, γ, δ, η, μ ∈ [0,1] such that their sum is less than 1, and x0 ∈ X with xn = Tnxn-1, then the sequence {xn} converges to a unique common fixed point v of the maps