Early prediction of software quality is important for better software planning and controlling. In early
development phases, design complexity metrics are considered as useful indicators of software testing
effort and some quality attributes. Although many studies investigate the relationship between design
complexity and cost and quality, it is unclear what we have learned beyond the scope of individual studies.
This paper presented a systematic review on the influence of software complexity metrics on quality
attributes. We aggregated Spearman correlation coefficients from 59 different data sets from 57 primary
studies by a tailored meta-analysis approach. We found that fault proneness and maintainability are most
frequently investigated attributes. Chidamber & Kemerer metric suite is most frequently used but not all of
them are good quality attribute indicators. Moreover, the impact of these metrics is not different in
proprietary and open source projects. The result provides some implications for building quality model
across project type.