The document discusses sarcasm detection using logistic regression. It compares the performance of logistic regression and SVM classification for sarcasm detection. Logistic regression achieved higher accuracy of 93.5% for sarcasm detection, with lower execution time compared to SVM classification. The proposed approach uses data preprocessing, feature extraction using N-grams, and trains a logistic regression classifier on a manually labeled dataset to classify text as sarcastic or non-sarcastic. Accuracy and execution time analysis shows logistic regression performs better than SVM for this task.