Organizations are struggling to make sense of their data within antiquated data platforms. Snowflake, the data warehouse built for the cloud, can help.
Snowflake is an analytic data warehouse provided as software-as-a-service (SaaS). It uses a unique architecture designed for the cloud, with a shared-disk database and shared-nothing architecture. Snowflake's architecture consists of three layers - the database layer, query processing layer, and cloud services layer - which are deployed and managed entirely on cloud platforms like AWS and Azure. Snowflake offers different editions like Standard, Premier, Enterprise, and Enterprise for Sensitive Data that provide additional features, support, and security capabilities.
Introducing Snowflake, an elastic data warehouse delivered as a service in the cloud. It aims to simplify data warehousing by removing the need for customers to manage infrastructure, scaling, and tuning. Snowflake uses a multi-cluster architecture to provide elastic scaling of storage, compute, and concurrency. It can bring together structured and semi-structured data for analysis without requiring data transformation. Customers have seen significant improvements in performance, cost savings, and the ability to add new workloads compared to traditional on-premises data warehousing solutions.
This document outlines an agenda for a 90-minute workshop on Snowflake. The agenda includes introductions, an overview of Snowflake and data warehousing, demonstrations of how users utilize Snowflake, hands-on exercises loading sample data and running queries, and discussions of Snowflake architecture and capabilities. Real-world customer examples are also presented, such as a pharmacy building new applications on Snowflake and an education company using it to unify their data sources and achieve a 16x performance improvement.
Snowflake concepts & hands on expertise to help get you started on implementing Data warehouses using Snowflake. Necessary information and skills that will help you master Snowflake essentials.
As cloud computing continues to gather speed, organizations with years’ worth of data stored on legacy on-premise technologies are facing issues with scale, speed, and complexity. Your customers and business partners are likely eager to get data from you, especially if you can make the process easy and secure.
Challenges with performance are not uncommon and ongoing interventions are required just to “keep the lights on”.
Discover how Snowflake empowers you to meet your analytics needs by unlocking the potential of your data.
Agenda of Webinar :
~Understand Snowflake and its Architecture
~Quickly load data into Snowflake
~Leverage the latest in Snowflake’s unlimited performance and scale to make the data ready for analytics
~Deliver secure and governed access to all data – no more silos
Introduction to Snowflake Datawarehouse and Architecture for Big data company. Centralized data management. Snowpipe and Copy into a command for data loading. Stream loading and Batch Processing.
The document discusses Snowflake, a cloud data platform. It covers Snowflake's data landscape and benefits over legacy systems. It also describes how Snowflake can be deployed on AWS, Azure and GCP. Pricing is noted to vary by region but not cloud platform. The document outlines Snowflake's editions, architecture using a shared-nothing model, support for structured data, storage compression, and virtual warehouses that can autoscale. Security features like MFA and encryption are highlighted.
Snowflake: The Good, the Bad, and the UglyTyler Wishnoff
Learn how to solve the top 3 challenges Snowflake customers face, and what you can do to ensure high-performance, intelligent analytics at any scale. Ideal for those currently using Snowflake and those considering it. Learn more at: https://kyligence.io/
A 30 day plan to start ending your data struggle with SnowflakeSnowflake Computing
This document outlines a 30-day plan to address common data struggles around loading, integrating, analyzing, and collaborating on data using Snowflake's data platform. It describes setting up a team, defining goals and scope, loading sample data, testing and deploying business logic transformations, creating warehouses for business intelligence tools, and connecting BI tools to the data. The goal is that after 30 days, teams will be collaborating more effectively, able to easily load and combine different data sources, have accurate business logic implemented, and gain more insights from their data.
Every day, businesses across a wide variety of industries share data to support insights that drive efficiency and new business opportunities. However, existing methods for sharing data involve great effort on the part of data providers to share data, and involve great effort on the part of data customers to make use of that data.
However, existing approaches to data sharing (such as e-mail, FTP, EDI, and APIs) have significant overhead and friction. For one, legacy approaches such as e-mail and FTP were never intended to support the big data volumes of today. Other data sharing methods also involve enormous effort. All of these methods require not only that the data be extracted, copied, transformed, and loaded, but also that related schemas and metadata must be transported as well. This creates a burden on data providers to deconstruct and stage data sets. This burden and effort is mirrored for the data recipient, who must reconstruct the data.
As a result, companies are handicapped in their ability to fully realize the value in their data assets.
Snowflake Data Sharing allows companies to grant instant access to ready-to-use data to any number of partners or data customers without any data movement, copying, or complex pipelines.
Using Snowflake Data Sharing, companies can derive new insights and value from data much more quickly and with significantly less effort than current data sharing methods. As a result, companies now have a new approach and a powerful new tool to get the full value out of their data assets.
Snowflake is a cloud data warehouse that offers scalable storage, flexible compute capabilities, and a shared data architecture. It uses a shared data model where data is stored independently from compute resources in micro-partitions in cloud object storage. This allows for elastic scaling of storage and compute. Snowflake also uses a virtual warehouse architecture where queries are processed in parallel across nodes, enabling high performance on large datasets. Data can be loaded into Snowflake from external sources like Amazon S3 and queries can be run across petabytes of data with ACID transactions and security at scale.
Bulk data loading in Snowflake involves the following steps:
1. Creating file format objects to define file types and formats
2. Creating stage objects to store loaded files
3. Staging data files in the stages
4. Listing the staged files
5. Copying data from the stages into target tables
Master the Multi-Clustered Data Warehouse - SnowflakeMatillion
Snowflake is one of the most powerful, efficient data warehouses on the market today—and we joined forces with the Snowflake team to show you how it works!
In this webinar:
- Learn how to optimize Snowflake
- Hear insider tips and tricks on how to improve performance
- Get expert insights from Craig Collier, Technical Architect from Snowflake, and Kalyan Arangam, Solution Architect from Matillion
- Find out how leading brands like Converse, Duo Security, and Pets at Home use Snowflake and Matillion ETL to make data-driven decisions
- Discover how Matillion ETL and Snowflake work together to modernize your data world
- Learn how to utilize the impressive scalability of Snowflake and Matillion
The document discusses elastic data warehousing using Snowflake's cloud-based data warehouse as a service. Traditional data warehousing and NoSQL solutions are costly and complex to manage. Snowflake provides a fully managed elastic cloud data warehouse that can scale instantly. It allows consolidating all data in one place and enables fast analytics on diverse data sources at massive scale, without the infrastructure complexity or management overhead of other solutions. Customers have realized significantly faster analytics, lower costs, and the ability to easily add new workloads compared to their previous data platforms.
How to Take Advantage of an Enterprise Data Warehouse in the CloudDenodo
Watch full webinar here: [https://buff.ly/2CIOtys]
As organizations collect increasing amounts of diverse data, integrating that data for analytics becomes more difficult. Technology that scales poorly and fails to support semi-structured data fails to meet the ever-increasing demands of today’s enterprise. In short, companies everywhere can’t consolidate their data into a single location for analytics.
In this Denodo DataFest 2018 session we’ll cover:
Bypassing the mandate of a single enterprise data warehouse
Modern data sharing to easily connect different data types located in multiple repositories for deeper analytics
How cloud data warehouses can scale both storage and compute, independently and elastically, to meet variable workloads
Presentation by Harsha Kapre, Snowflake
Databricks is a Software-as-a-Service-like experience (or Spark-as-a-service) that is a tool for curating and processing massive amounts of data and developing, training and deploying models on that data, and managing the whole workflow process throughout the project. It is for those who are comfortable with Apache Spark as it is 100% based on Spark and is extensible with support for Scala, Java, R, and Python alongside Spark SQL, GraphX, Streaming and Machine Learning Library (Mllib). It has built-in integration with many data sources, has a workflow scheduler, allows for real-time workspace collaboration, and has performance improvements over traditional Apache Spark.
Snowflake's Kent Graziano talks about what makes a data warehouse as a service and some of the key features of Snowflake's data warehouse as a service.
This document provides an agenda and overview of a presentation on cloud data warehousing. The presentation discusses data challenges companies face today with large and diverse data sources, and how a cloud data warehouse can help address these challenges by providing unlimited scalability, flexibility, and lower costs. It introduces Snowflake as a first cloud data warehouse built for the cloud, with features like separation of storage and compute, automatic query optimization, and built-in security and encryption. Other cloud data warehouse offerings like Amazon Redshift are also briefly discussed.
The document discusses Snowflake, a cloud data warehouse company. Snowflake addresses the problem of efficiently storing and accessing large amounts of user data. It provides an easy to use cloud platform as an alternative to expensive in-house servers. Snowflake's business model involves clients renting storage and computation power on a pay-per-usage basis. Though it has high costs, Snowflake has seen rapid growth and raised over $1.4 billion from investors. Its competitive advantages include an architecture built specifically for the cloud and a focus on speed, ease of use and cost effectiveness.
In this webinar you'll learn how to quickly and easily improve your business using Snowflake and Matillion ETL for Snowflake. Webinar presented by Solution Architects Craig Collier (Snowflake) adn Kalyan Arangam (Matillion).
In this webinar:
- Learn to optimize Snowflake and leverage Matillion ETL for Snowflake
- Discover tips and tricks to improve performance
- Get invaluable insights from data warehousing pros
Actionable Insights with AI - Snowflake for Data ScienceHarald Erb
Talk @ ScaleUp 360° AI Infrastructures DACH, 2021: Data scientists spend 80% and more of their time searching for and preparing data. This talk explains Snowflake’s Platform capabilities like near-unlimited data storage and instant and near-infinite compute resources and how the platform can be used to seamlessly integrate and support the machine learning libraries and tools data scientists rely on.
Big data architectures and the data lakeJames Serra
The document provides an overview of big data architectures and the data lake concept. It discusses why organizations are adopting data lakes to handle increasing data volumes and varieties. The key aspects covered include:
- Defining top-down and bottom-up approaches to data management
- Explaining what a data lake is and how Hadoop can function as the data lake
- Describing how a modern data warehouse combines features of a traditional data warehouse and data lake
- Discussing how federated querying allows data to be accessed across multiple sources
- Highlighting benefits of implementing big data solutions in the cloud
- Comparing shared-nothing, massively parallel processing (MPP) architectures to symmetric multi-processing (
Modernizing to a Cloud Data ArchitectureDatabricks
Organizations with on-premises Hadoop infrastructure are bogged down by system complexity, unscalable infrastructure, and the increasing burden on DevOps to manage legacy architectures. Costs and resource utilization continue to go up while innovation has flatlined. In this session, you will learn why, now more than ever, enterprises are looking for cloud alternatives to Hadoop and are migrating off of the architecture in large numbers. You will also learn how elastic compute models’ benefits help one customer scale their analytics and AI workloads and best practices from their experience on a successful migration of their data and workloads to the cloud.
Azure Synapse Analytics is Azure SQL Data Warehouse evolved: a limitless analytics service, that brings together enterprise data warehousing and Big Data analytics into a single service. It gives you the freedom to query data on your terms, using either serverless on-demand or provisioned resources, at scale. Azure Synapse brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate business intelligence and machine learning needs. This is a huge deck with lots of screenshots so you can see exactly how it works.
This document provides an introduction and overview of Azure Data Lake. It describes Azure Data Lake as a single store of all data ranging from raw to processed that can be used for reporting, analytics and machine learning. It discusses key Azure Data Lake components like Data Lake Store, Data Lake Analytics, HDInsight and the U-SQL language. It compares Data Lakes to data warehouses and explains how Azure Data Lake Store, Analytics and U-SQL process and transform data at scale.
Data Warehouse - Incremental Migration to the CloudMichael Rainey
A data warehouse (DW) migration is no small undertaking, especially when moving from on-premises to the cloud. A typical data warehouse has numerous data sources connecting and loading data into the DW, ETL tools and data integration scripts performing transformations, and reporting, advanced analytics, or ad-hoc query tools accessing the data for insights and analysis. That’s a lot to coordinate and the data warehouse cannot be migrated all at once. Using a data replication technology such as Oracle GoldenGate, the data warehouse migration can be performed incrementally by keeping the data in-sync between the original DW and the new, cloud DW. This session will dive into the steps necessary for this incremental migration approach and walk through a customer use case scenario, leaving attendees with an understanding of how to perform a data warehouse migration to the cloud.
Presented at RMOUG Training Days 2019
Simplifying Your Journey to the Cloud: The Benefits of a Cloud-Based Data War...Matillion
As companies grow, so does the volume of their data. Without the proper solutions in place to quickly store, measure and analyze that data, its usefulness quickly declines.
See our latest webinar to learn about how companies are increasingly turning towards cloud-based data warehousing to derive more value out of their data and apply their findings to make smarter business decisions. The webinar covers core topics including:
- The benefits of using Snowflake’s unique architecture for interacting with data.
- How Matillion can help you quickly load and transform your data to maximize its value.
- Expert advice on how to apply data warehousing and ETL best practices.
Watch the full webinar: https://youtu.be/mIOm3j431OQ
Demystifying Data Warehousing as a Service - DFWKent Graziano
This document provides an overview and introduction to Snowflake's cloud data warehousing capabilities. It begins with the speaker's background and credentials. It then discusses common data challenges organizations face today around data silos, inflexibility, and complexity. The document defines what a cloud data warehouse as a service (DWaaS) is and explains how it can help address these challenges. It provides an agenda for the topics to be covered, including features of Snowflake's cloud DWaaS and how it enables use cases like data mart consolidation and integrated data analytics. The document highlights key aspects of Snowflake's architecture and technology.
Snowflake: The Good, the Bad, and the UglyTyler Wishnoff
Learn how to solve the top 3 challenges Snowflake customers face, and what you can do to ensure high-performance, intelligent analytics at any scale. Ideal for those currently using Snowflake and those considering it. Learn more at: https://kyligence.io/
A 30 day plan to start ending your data struggle with SnowflakeSnowflake Computing
This document outlines a 30-day plan to address common data struggles around loading, integrating, analyzing, and collaborating on data using Snowflake's data platform. It describes setting up a team, defining goals and scope, loading sample data, testing and deploying business logic transformations, creating warehouses for business intelligence tools, and connecting BI tools to the data. The goal is that after 30 days, teams will be collaborating more effectively, able to easily load and combine different data sources, have accurate business logic implemented, and gain more insights from their data.
Every day, businesses across a wide variety of industries share data to support insights that drive efficiency and new business opportunities. However, existing methods for sharing data involve great effort on the part of data providers to share data, and involve great effort on the part of data customers to make use of that data.
However, existing approaches to data sharing (such as e-mail, FTP, EDI, and APIs) have significant overhead and friction. For one, legacy approaches such as e-mail and FTP were never intended to support the big data volumes of today. Other data sharing methods also involve enormous effort. All of these methods require not only that the data be extracted, copied, transformed, and loaded, but also that related schemas and metadata must be transported as well. This creates a burden on data providers to deconstruct and stage data sets. This burden and effort is mirrored for the data recipient, who must reconstruct the data.
As a result, companies are handicapped in their ability to fully realize the value in their data assets.
Snowflake Data Sharing allows companies to grant instant access to ready-to-use data to any number of partners or data customers without any data movement, copying, or complex pipelines.
Using Snowflake Data Sharing, companies can derive new insights and value from data much more quickly and with significantly less effort than current data sharing methods. As a result, companies now have a new approach and a powerful new tool to get the full value out of their data assets.
Snowflake is a cloud data warehouse that offers scalable storage, flexible compute capabilities, and a shared data architecture. It uses a shared data model where data is stored independently from compute resources in micro-partitions in cloud object storage. This allows for elastic scaling of storage and compute. Snowflake also uses a virtual warehouse architecture where queries are processed in parallel across nodes, enabling high performance on large datasets. Data can be loaded into Snowflake from external sources like Amazon S3 and queries can be run across petabytes of data with ACID transactions and security at scale.
Bulk data loading in Snowflake involves the following steps:
1. Creating file format objects to define file types and formats
2. Creating stage objects to store loaded files
3. Staging data files in the stages
4. Listing the staged files
5. Copying data from the stages into target tables
Master the Multi-Clustered Data Warehouse - SnowflakeMatillion
Snowflake is one of the most powerful, efficient data warehouses on the market today—and we joined forces with the Snowflake team to show you how it works!
In this webinar:
- Learn how to optimize Snowflake
- Hear insider tips and tricks on how to improve performance
- Get expert insights from Craig Collier, Technical Architect from Snowflake, and Kalyan Arangam, Solution Architect from Matillion
- Find out how leading brands like Converse, Duo Security, and Pets at Home use Snowflake and Matillion ETL to make data-driven decisions
- Discover how Matillion ETL and Snowflake work together to modernize your data world
- Learn how to utilize the impressive scalability of Snowflake and Matillion
The document discusses elastic data warehousing using Snowflake's cloud-based data warehouse as a service. Traditional data warehousing and NoSQL solutions are costly and complex to manage. Snowflake provides a fully managed elastic cloud data warehouse that can scale instantly. It allows consolidating all data in one place and enables fast analytics on diverse data sources at massive scale, without the infrastructure complexity or management overhead of other solutions. Customers have realized significantly faster analytics, lower costs, and the ability to easily add new workloads compared to their previous data platforms.
How to Take Advantage of an Enterprise Data Warehouse in the CloudDenodo
Watch full webinar here: [https://buff.ly/2CIOtys]
As organizations collect increasing amounts of diverse data, integrating that data for analytics becomes more difficult. Technology that scales poorly and fails to support semi-structured data fails to meet the ever-increasing demands of today’s enterprise. In short, companies everywhere can’t consolidate their data into a single location for analytics.
In this Denodo DataFest 2018 session we’ll cover:
Bypassing the mandate of a single enterprise data warehouse
Modern data sharing to easily connect different data types located in multiple repositories for deeper analytics
How cloud data warehouses can scale both storage and compute, independently and elastically, to meet variable workloads
Presentation by Harsha Kapre, Snowflake
Databricks is a Software-as-a-Service-like experience (or Spark-as-a-service) that is a tool for curating and processing massive amounts of data and developing, training and deploying models on that data, and managing the whole workflow process throughout the project. It is for those who are comfortable with Apache Spark as it is 100% based on Spark and is extensible with support for Scala, Java, R, and Python alongside Spark SQL, GraphX, Streaming and Machine Learning Library (Mllib). It has built-in integration with many data sources, has a workflow scheduler, allows for real-time workspace collaboration, and has performance improvements over traditional Apache Spark.
Snowflake's Kent Graziano talks about what makes a data warehouse as a service and some of the key features of Snowflake's data warehouse as a service.
This document provides an agenda and overview of a presentation on cloud data warehousing. The presentation discusses data challenges companies face today with large and diverse data sources, and how a cloud data warehouse can help address these challenges by providing unlimited scalability, flexibility, and lower costs. It introduces Snowflake as a first cloud data warehouse built for the cloud, with features like separation of storage and compute, automatic query optimization, and built-in security and encryption. Other cloud data warehouse offerings like Amazon Redshift are also briefly discussed.
The document discusses Snowflake, a cloud data warehouse company. Snowflake addresses the problem of efficiently storing and accessing large amounts of user data. It provides an easy to use cloud platform as an alternative to expensive in-house servers. Snowflake's business model involves clients renting storage and computation power on a pay-per-usage basis. Though it has high costs, Snowflake has seen rapid growth and raised over $1.4 billion from investors. Its competitive advantages include an architecture built specifically for the cloud and a focus on speed, ease of use and cost effectiveness.
In this webinar you'll learn how to quickly and easily improve your business using Snowflake and Matillion ETL for Snowflake. Webinar presented by Solution Architects Craig Collier (Snowflake) adn Kalyan Arangam (Matillion).
In this webinar:
- Learn to optimize Snowflake and leverage Matillion ETL for Snowflake
- Discover tips and tricks to improve performance
- Get invaluable insights from data warehousing pros
Actionable Insights with AI - Snowflake for Data ScienceHarald Erb
Talk @ ScaleUp 360° AI Infrastructures DACH, 2021: Data scientists spend 80% and more of their time searching for and preparing data. This talk explains Snowflake’s Platform capabilities like near-unlimited data storage and instant and near-infinite compute resources and how the platform can be used to seamlessly integrate and support the machine learning libraries and tools data scientists rely on.
Big data architectures and the data lakeJames Serra
The document provides an overview of big data architectures and the data lake concept. It discusses why organizations are adopting data lakes to handle increasing data volumes and varieties. The key aspects covered include:
- Defining top-down and bottom-up approaches to data management
- Explaining what a data lake is and how Hadoop can function as the data lake
- Describing how a modern data warehouse combines features of a traditional data warehouse and data lake
- Discussing how federated querying allows data to be accessed across multiple sources
- Highlighting benefits of implementing big data solutions in the cloud
- Comparing shared-nothing, massively parallel processing (MPP) architectures to symmetric multi-processing (
Modernizing to a Cloud Data ArchitectureDatabricks
Organizations with on-premises Hadoop infrastructure are bogged down by system complexity, unscalable infrastructure, and the increasing burden on DevOps to manage legacy architectures. Costs and resource utilization continue to go up while innovation has flatlined. In this session, you will learn why, now more than ever, enterprises are looking for cloud alternatives to Hadoop and are migrating off of the architecture in large numbers. You will also learn how elastic compute models’ benefits help one customer scale their analytics and AI workloads and best practices from their experience on a successful migration of their data and workloads to the cloud.
Azure Synapse Analytics is Azure SQL Data Warehouse evolved: a limitless analytics service, that brings together enterprise data warehousing and Big Data analytics into a single service. It gives you the freedom to query data on your terms, using either serverless on-demand or provisioned resources, at scale. Azure Synapse brings these two worlds together with a unified experience to ingest, prepare, manage, and serve data for immediate business intelligence and machine learning needs. This is a huge deck with lots of screenshots so you can see exactly how it works.
This document provides an introduction and overview of Azure Data Lake. It describes Azure Data Lake as a single store of all data ranging from raw to processed that can be used for reporting, analytics and machine learning. It discusses key Azure Data Lake components like Data Lake Store, Data Lake Analytics, HDInsight and the U-SQL language. It compares Data Lakes to data warehouses and explains how Azure Data Lake Store, Analytics and U-SQL process and transform data at scale.
Data Warehouse - Incremental Migration to the CloudMichael Rainey
A data warehouse (DW) migration is no small undertaking, especially when moving from on-premises to the cloud. A typical data warehouse has numerous data sources connecting and loading data into the DW, ETL tools and data integration scripts performing transformations, and reporting, advanced analytics, or ad-hoc query tools accessing the data for insights and analysis. That’s a lot to coordinate and the data warehouse cannot be migrated all at once. Using a data replication technology such as Oracle GoldenGate, the data warehouse migration can be performed incrementally by keeping the data in-sync between the original DW and the new, cloud DW. This session will dive into the steps necessary for this incremental migration approach and walk through a customer use case scenario, leaving attendees with an understanding of how to perform a data warehouse migration to the cloud.
Presented at RMOUG Training Days 2019
Simplifying Your Journey to the Cloud: The Benefits of a Cloud-Based Data War...Matillion
As companies grow, so does the volume of their data. Without the proper solutions in place to quickly store, measure and analyze that data, its usefulness quickly declines.
See our latest webinar to learn about how companies are increasingly turning towards cloud-based data warehousing to derive more value out of their data and apply their findings to make smarter business decisions. The webinar covers core topics including:
- The benefits of using Snowflake’s unique architecture for interacting with data.
- How Matillion can help you quickly load and transform your data to maximize its value.
- Expert advice on how to apply data warehousing and ETL best practices.
Watch the full webinar: https://youtu.be/mIOm3j431OQ
Demystifying Data Warehousing as a Service - DFWKent Graziano
This document provides an overview and introduction to Snowflake's cloud data warehousing capabilities. It begins with the speaker's background and credentials. It then discusses common data challenges organizations face today around data silos, inflexibility, and complexity. The document defines what a cloud data warehouse as a service (DWaaS) is and explains how it can help address these challenges. It provides an agenda for the topics to be covered, including features of Snowflake's cloud DWaaS and how it enables use cases like data mart consolidation and integrated data analytics. The document highlights key aspects of Snowflake's architecture and technology.
Big Data in IoT & Deep Learning
Challenges of IoT Big Data Analytics Applications
Challenges of Cloud-based IoT Platform
Cloud-based IoT Platform Use Case: GE Predix for Smart Building Energy Management
Fog/Edge Computing & Micro Data Centers
Deep Learning for IoT Big Data Analytics Introduction
Deep Learning for IoT Big Data Analytics Use Case
Distributed Deep Learning
Big Data + IoT + Cloud + Deep Learning Insights from Patents
Big Data + IoT + Cloud + Deep Learning Strategy Development
Designing Data-Intensive Applications
Xanadu Functionality
Xanadu Use Case
Xanadu + Deep Learning + Hadoop Integration
IBM's zAnalytics strategy provides a complete picture of analytics on the mainframe using DB2, the DB2 Analytics Accelerator, and Watson Machine Learning for System z. The presentation discusses updates to DB2 for z/OS including agile partition technology, in-memory processing, and RESTful APIs. It also reviews how the DB2 Analytics Accelerator can integrate with Machine Learning for z/OS to enable scoring of machine learning models directly on the mainframe for both small and large datasets.
Jethro + Symphony Health at Qlik QonnectionsRemy Rosenbaum
Presentation from Qlik Qonnections conference 2017. The slides detail how Symphony Health uses Jethro to deliver business users the insights they seek at interactive speed. Learn about Symphony's BI applications and how Jethro transparently accelerates performance at scale at a fraction of the cost.
IoT Architectural Overview - 3 use case studies from InfluxData InfluxData
This SlideShare reviews how an IoT Data platform fits in with any IoT Architecture to manage the data requirements of every IoT implementation. It is based on the learnings from existing IoT practitioners that have adopted an IoT Data platform using InfluxData. These clients have a range of solutions–from home automation (thermostat monitoring & management), to infrastructure management (solar panel monitoring and control) to manufacturing (equipment monitoring & control) as well as environmental management (green wall monitoring & control).
These learnings will help IoT adopters avoid the common pitfalls current clients faced on their journey to developing their IoT solution.
Webinar presented live on August 11, 2017
Today, the majority of big data and analytics use cases are built on hybrid cloud infrastructure. A hybrid cloud is a combination of on-premises and local cloud resources integrated with one or more dedicated cloud(s) and one or more public cloud(s). Hybrid cloud computing has matured to support data security and privacy requirements as well as increased scalability and computational power needed for big data and analytics solutions.
This webinar summarizes what hybrid cloud is, explains why it is important in the context of big data and analytics, and discusses implementation considerations unique to hybrid cloud computing.
The presentation draws from the CSCC's deliverable, Hybrid Cloud Considerations for Big Data and Analytics:
http://www.cloud-council.org/deliverables/hybrid-cloud-considerations-for-big-data-and-analytics.htm
Download the presentation deck here:
http://www.cloud-council.org/webinars/hybrid-cloud-considerations-for-big-data-and-analytics.htm
This document discusses challenges with multi-cloud data management and myths around cloud data protection responsibilities. It introduces Veritas' unified data protection platform called NetBackup 8.1, which provides 3x better data transfer speeds to the cloud. It also announces a new cloud-native data protection product called CloudPoint and an object storage solution called Cloud Storage to help customers better manage rapidly growing data in multi-cloud environments.
Verizon Centralizes Data into a Data Lake in Real Time for AnalyticsDataWorks Summit
Verizon – Global Technology Services (GTS) was challenged by a multi-tier, labor-intensive process when trying to migrate data from disparate sources into a data lake to create financial reports and business insights. Join this session to learn more about how Verizon:
• Easily accessed data from multiple sources including SAP data
• Ingested data into major targets including Hadoop
• Achieved real-time insights from data leveraging change data capture (CDC) technology
• Reduced costs and labor
Mykola Murha "Using Google Cloud Platform for creating of Big Data Analysis ...Lviv Startup Club
Google Cloud Platform provides various services for collecting, storing, analyzing, and modeling big data and for creating IoT solutions. These services include Cloud IoT Core for collecting IoT device data, Cloud Storage options for storing data, BigQuery and Bigtable for large-scale data analysis, and Machine Learning Engine for building models. These services can be combined to build end-to-end data pipelines and analytics dashboards for big data and IoT applications. Techsvit offers consulting and implementation services around using Google Cloud Platform for these solutions.
The new dominant companies are running on data SnapLogic
The cost of Digital Transformation is dropping rapidly. The technologies and methodologies are evolving to open up new opportunities for new and established corporations to drive business. We will examine specific examples of how and why a combination of robust infrastructure, cloud first and machine learning can take your company to the next level of value and efficiency.
Rich Dill, SnapLogic's enterprise solutions architect, at Big Data LDN 2017.
This document discusses how enterprises have transformed their IT infrastructures and data processing since 2007 by leveraging cloud platforms and services. It notes that infrastructures used to enable static deployments that changed every few years, but now production SAP and Spark clusters can be provisioned within minutes using cloud services. This raises questions about how enterprises can maintain control over their increasingly agile environments. The document then outlines different tiers of data storage from an infrastructure perspective and recommends leveraging all tiers for an enterprise's data needs. Finally, it presents a basic approach for enterprise data storage and processing using various cloud services and cautions that the best path for SAP-related work is to find the right balance rather than going all-in to
Partner Webinar: Mesosphere and DSE: Production-Proven Infrastructure for Fas...DataStax
In this webinar, experts from DataStax and Mesosphere provide an overview of requirements for fast data applications, and explore the use cases for running DataStax Enterprise on the Mesosphere DC/OS platform.
View recording: https://youtu.be/5HwNxZvr8fI
Explore all DataStax webinars: http://www.datastax.com/resources/webinars
Big Data LDN 2017: The New Dominant Companies Are Running on DataMatt Stubbs
The document discusses solutions for deriving value from data through data integration and analytics. It describes three approaches companies have taken: 1) Building a custom machine learning platform like Uber's Michelangelo. 2) Developing custom integrations for a large multinational corporation with many technologies. 3) Implementing a cloud-first enterprise data stack for a 360-degree view of customers. The cloud-first approach provides benefits like scalability, collaboration, and reduced maintenance costs.
What does it take to break out of an IoT Proof of Concept and deploy an enterprise grade IoT Solution? This slideshare is an extract from a live talk presented by Bridgera.
Adobe Lightroom Classic Crack FREE Latest link 2025kashifyounis067
🌍📱👉COPY LINK & PASTE ON GOOGLE http://drfiles.net/ 👈🌍
Adobe Lightroom Classic is a desktop-based software application for editing and managing digital photos. It focuses on providing users with a powerful and comprehensive set of tools for organizing, editing, and processing their images on their computer. Unlike the newer Lightroom, which is cloud-based, Lightroom Classic stores photos locally on your computer and offers a more traditional workflow for professional photographers.
Here's a more detailed breakdown:
Key Features and Functions:
Organization:
Lightroom Classic provides robust tools for organizing your photos, including creating collections, using keywords, flags, and color labels.
Editing:
It offers a wide range of editing tools for making adjustments to color, tone, and more.
Processing:
Lightroom Classic can process RAW files, allowing for significant adjustments and fine-tuning of images.
Desktop-Focused:
The application is designed to be used on a computer, with the original photos stored locally on the hard drive.
Non-Destructive Editing:
Edits are applied to the original photos in a non-destructive way, meaning the original files remain untouched.
Key Differences from Lightroom (Cloud-Based):
Storage Location:
Lightroom Classic stores photos locally on your computer, while Lightroom stores them in the cloud.
Workflow:
Lightroom Classic is designed for a desktop workflow, while Lightroom is designed for a cloud-based workflow.
Connectivity:
Lightroom Classic can be used offline, while Lightroom requires an internet connection to sync and access photos.
Organization:
Lightroom Classic offers more advanced organization features like Collections and Keywords.
Who is it for?
Professional Photographers:
PCMag notes that Lightroom Classic is a popular choice among professional photographers who need the flexibility and control of a desktop-based application.
Users with Large Collections:
Those with extensive photo collections may prefer Lightroom Classic's local storage and robust organization features.
Users who prefer a traditional workflow:
Users who prefer a more traditional desktop workflow, with their original photos stored on their computer, will find Lightroom Classic a good fit.
Get & Download Wondershare Filmora Crack Latest [2025]saniaaftab72555
Copy & Past Link 👉👉
https://dr-up-community.info/
Wondershare Filmora is a video editing software and app designed for both beginners and experienced users. It's known for its user-friendly interface, drag-and-drop functionality, and a wide range of tools and features for creating and editing videos. Filmora is available on Windows, macOS, iOS (iPhone/iPad), and Android platforms.
Copy & Past Link 👉👉
http://drfiles.net/
When you say Xforce with GTA 5, it sounds like you might be talking about Xforce Keygen — a tool that's often mentioned in connection with cracking software like Autodesk programs.
BUT, when it comes to GTA 5, Xforce isn't officially part of the game or anything Rockstar made.
If you're seeing "Xforce" related to GTA 5 downloads or cracks, it's usually some unofficial (and risky) tool for pirating the game — which can be super dangerous because:
Solidworks Crack 2025 latest new + license codeaneelaramzan63
Copy & Paste On Google >>> https://dr-up-community.info/
The two main methods for installing standalone licenses of SOLIDWORKS are clean installation and parallel installation (the process is different ...
Disable your internet connection to prevent the software from performing online checks during installation
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)Andre Hora
Software testing plays a crucial role in the contribution process of open-source projects. For example, contributions introducing new features are expected to include tests, and contributions with tests are more likely to be accepted. Although most real-world projects require contributors to write tests, the specific testing practices communicated to contributors remain unclear. In this paper, we present an empirical study to understand better how software testing is approached in contribution guidelines. We analyze the guidelines of 200 Python and JavaScript open-source software projects. We find that 78% of the projects include some form of test documentation for contributors. Test documentation is located in multiple sources, including CONTRIBUTING files (58%), external documentation (24%), and README files (8%). Furthermore, test documentation commonly explains how to run tests (83.5%), but less often provides guidance on how to write tests (37%). It frequently covers unit tests (71%), but rarely addresses integration (20.5%) and end-to-end tests (15.5%). Other key testing aspects are also less frequently discussed: test coverage (25.5%) and mocking (9.5%). We conclude by discussing implications and future research.
Exploring Wayland: A Modern Display Server for the FutureICS
Wayland is revolutionizing the way we interact with graphical interfaces, offering a modern alternative to the X Window System. In this webinar, we’ll delve into the architecture and benefits of Wayland, including its streamlined design, enhanced performance, and improved security features.
Mastering OOP: Understanding the Four Core PillarsMarcel David
Visit for updated note:
https://www.notion.so/Four-Pillars-of-Object-Oriented-Programming-OOP-1e2d7d9612808079b7c5f938afd62a7b?pvs=4
Dive into the essential concepts of Object-Oriented Programming (OOP) with a detailed explanation of its four key pillars: Encapsulation, Inheritance, Polymorphism, and Abstraction. Understand how these principles contribute to robust, maintainable, and scalable software development.
Adobe Master Collection CC Crack Advance Version 2025kashifyounis067
🌍📱👉COPY LINK & PASTE ON GOOGLE http://drfiles.net/ 👈🌍
Adobe Master Collection CC (Creative Cloud) is a comprehensive subscription-based package that bundles virtually all of Adobe's creative software applications. It provides access to a wide range of tools for graphic design, video editing, web development, photography, and more. Essentially, it's a one-stop-shop for creatives needing a broad set of professional tools.
Key Features and Benefits:
All-in-one access:
The Master Collection includes apps like Photoshop, Illustrator, InDesign, Premiere Pro, After Effects, Audition, and many others.
Subscription-based:
You pay a recurring fee for access to the latest versions of all the software, including new features and updates.
Comprehensive suite:
It offers tools for a wide variety of creative tasks, from photo editing and illustration to video editing and web development.
Cloud integration:
Creative Cloud provides cloud storage, asset sharing, and collaboration features.
Comparison to CS6:
While Adobe Creative Suite 6 (CS6) was a one-time purchase version of the software, Adobe Creative Cloud (CC) is a subscription service. CC offers access to the latest versions, regular updates, and cloud integration, while CS6 is no longer updated.
Examples of included software:
Adobe Photoshop: For image editing and manipulation.
Adobe Illustrator: For vector graphics and illustration.
Adobe InDesign: For page layout and desktop publishing.
Adobe Premiere Pro: For video editing and post-production.
Adobe After Effects: For visual effects and motion graphics.
Adobe Audition: For audio editing and mixing.
FL Studio Producer Edition Crack 2025 Full Versiontahirabibi60507
Copy & Past Link 👉👉
http://drfiles.net/
FL Studio is a Digital Audio Workstation (DAW) software used for music production. It's developed by the Belgian company Image-Line. FL Studio allows users to create and edit music using a graphical user interface with a pattern-based music sequencer.
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...Ranjan Baisak
As software complexity grows, traditional static analysis tools struggle to detect vulnerabilities with both precision and context—often triggering high false positive rates and developer fatigue. This article explores how Graph Neural Networks (GNNs), when applied to source code representations like Abstract Syntax Trees (ASTs), Control Flow Graphs (CFGs), and Data Flow Graphs (DFGs), can revolutionize vulnerability detection. We break down how GNNs model code semantics more effectively than flat token sequences, and how techniques like attention mechanisms, hybrid graph construction, and feedback loops significantly reduce false positives. With insights from real-world datasets and recent research, this guide shows how to build more reliable, proactive, and interpretable vulnerability detection systems using GNNs.
Join Ajay Sarpal and Miray Vu to learn about key Marketo Engage enhancements. Discover improved in-app Salesforce CRM connector statistics for easy monitoring of sync health and throughput. Explore new Salesforce CRM Synch Dashboards providing up-to-date insights into weekly activity usage, thresholds, and limits with drill-down capabilities. Learn about proactive notifications for both Salesforce CRM sync and product usage overages. Get an update on improved Salesforce CRM synch scale and reliability coming in Q2 2025.
Key Takeaways:
Improved Salesforce CRM User Experience: Learn how self-service visibility enhances satisfaction.
Utilize Salesforce CRM Synch Dashboards: Explore real-time weekly activity data.
Monitor Performance Against Limits: See threshold limits for each product level.
Get Usage Over-Limit Alerts: Receive notifications for exceeding thresholds.
Learn About Improved Salesforce CRM Scale: Understand upcoming cloud-based incremental sync.
Agentic AI Use Cases using GenAI LLM modelsManish Chopra
This document presents specific use cases for Agentic AI (Artificial Intelligence), featuring Large Language Models (LLMs), Generative AI, and snippets of Python code alongside each use case.
Adobe Photoshop Lightroom CC 2025 Crack Latest Versionusmanhidray
Copy & Past Lank 👉👉
http://drfiles.net/
Adobe Photoshop Lightroom is a photo editing and organization software application primarily used by photographers. It's designed to streamline workflows, manage large photo collections, and make adjustments to images in a non-destructive way. Lightroom is available across various platforms, including desktop, mobile (iOS and Android), and web, allowing for consistent editing and organization across devices.
Explaining GitHub Actions Failures with Large Language Models Challenges, In...ssuserb14185
GitHub Actions (GA) has become the de facto tool that developers use to automate software workflows, seamlessly building, testing, and deploying code. Yet when GA fails, it disrupts development, causing delays and driving up costs. Diagnosing failures becomes especially challenging because error logs are often long, complex and unstructured. Given these difficulties, this study explores the potential of large language models (LLMs) to generate correct, clear, concise, and actionable contextual descriptions (or summaries) for GA failures, focusing on developers’ perceptions of their feasibility and usefulness. Our results show that over 80% of developers rated LLM explanations positively in terms of correctness for simpler/small logs. Overall, our findings suggest that LLMs can feasibly assist developers in understanding common GA errors, thus, potentially reducing manual analysis. However, we also found that improved reasoning abilities are needed to support more complex CI/CD scenarios. For instance, less experienced developers tend to be more positive on the described context, while seasoned developers prefer concise summaries. Overall, our work offers key insights for researchers enhancing LLM reasoning, particularly in adapting explanations to user expertise.
https://arxiv.org/abs/2501.16495
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)Andre Hora
Exceptions allow developers to handle error cases expected to occur infrequently. Ideally, good test suites should test both normal and exceptional behaviors to catch more bugs and avoid regressions. While current research analyzes exceptions that propagate to tests, it does not explore other exceptions that do not reach the tests. In this paper, we provide an empirical study to explore how frequently exceptional behaviors are tested in real-world systems. We consider both exceptions that propagate to tests and the ones that do not reach the tests. For this purpose, we run an instrumented version of test suites, monitor their execution, and collect information about the exceptions raised at runtime. We analyze the test suites of 25 Python systems, covering 5,372 executed methods, 17.9M calls, and 1.4M raised exceptions. We find that 21.4% of the executed methods do raise exceptions at runtime. In methods that raise exceptions, on the median, 1 in 10 calls exercise exceptional behaviors. Close to 80% of the methods that raise exceptions do so infrequently, but about 20% raise exceptions more frequently. Finally, we provide implications for researchers and practitioners. We suggest developing novel tools to support exercising exceptional behaviors and refactoring expensive try/except blocks. We also call attention to the fact that exception-raising behaviors are not necessarily “abnormal” or rare.
Douwan Crack 2025 new verson+ License codeaneelaramzan63
Copy & Paste On Google >>> https://dr-up-community.info/
Douwan Preactivated Crack Douwan Crack Free Download. Douwan is a comprehensive software solution designed for data management and analysis.
8. • Our Vision
8
Diverse Data Analytics & Apps
100% Cloud
Scale of Data
Workload, and concurrency
Data exploration BI / Reporting
Predictive analytics Data-driven apps
Enterprise apps Corporate Web
Mobile Internet of things 3rd party
9. Diverse Data Analytics & Apps
100% Cloud
Scale of Data
Workload, and concurrency
Enterprise apps Corporate Web
Mobile Internet of things 3rd party
Complete SQL
Database
Zero
Management
All of
your Data
All of
your Users
Pay only for
what you use
9
5 Key Breakthroughs
10. Complete SQL Database
z
Query
Data definition
Role based security
Updates and deletes
Multi-statement
transactions
Complete database
Support for the SQL that
business users already know
Broad ecosystem of
technology partners
#3: I want to talk about data struggles that we are seeing in the real world.
#4: Don’t go into too much detail on this slide. Here’s more detail for context (don’t mention all of this, but go over briefly):
Preparing disparate data to load
The struggle to load data begins with the need to prepare disparate datasets to load. Many organizations are dealing with a host of new semi-structured data in formats like JSON and Avro that require flattening to load into a relational database. Or, they choose to store semi-structured data separate from relational data in a NoSQL store, creating silos.
Capacity planning
Finding space for data can be another enormous challenge. Large numbers of complex datasets can quickly snowball into a storage capacity issue on fixed size on-premises or cloud data platforms.
Resource contention
Loading large datasets also requires significant compute capacity. Many data warehouses are already strained under normal business workloads, and the compute needed for loading forces those other processes to be pushed back in the priority queue.
#5: Don’t go into too much detail on this slide. Here’s more detail for context (don’t mention all of this, but go over briefly):
Making sense of data in silos
With data scattered across NoSQL data lakes, cloud applications, and data warehouses (not to mention flat files and CSVs), organizations are struggling to combine and analyze their data in one cohesive picture.
Editing and transforming data
Every system that stores data has it’s challenges, but many organizations are finding it particularly hard to analyze and understand data in NoSQL systems like Hadoop. Semi-structured open source data stores require a large amount of custom configuration, uncommon skillets, and transformation to successfully combine with other business data. They also rarely support edit, update and insert commands that are essential to data modeling and transformation.
Supporting evolving business logic and disparate use cases
It’s hard for the business to drive evolutions in business logic within the database when it takes arduous manual process to test and update. Often, entire databases need to be physically copied in order to test a simple change to a table or derived field, which can be extremely expensive and time consuming. Because different people within the organization have different data needs, a “single source of the truth” is often too ungainly and impractical for most organizations to maintain and use.
#6: Don’t go into too much detail on this slide. Here’s more detail for context (don’t mention all of this, but go over briefly):
Queues
Analytics users are always at the bottom of the resource priority queue. It’s not always designed to be that way, but if ETL, as a simplified example, needs to run for 45 minutes every hour, then there’s little time left over for the analytics team to access and iterate on the database.
Delays
Through the eyes of an analyst, nothing ever works fast enough. But, often disappointing performance isn’t for lack of trying. Many data warehouses require hours and hours of painstaking optimization, tuning, indexing, sorting, and vacuuming from a dedicated data engineer. To add to the pain, often one optimization will lead to deoptimization in another area
#7: Incessant fixing
If the organization spends all its time endlessly solving loading, integration, and analytics struggles, it’s impossible to break away and think at a higher level about what needs to be accomplished. Data is a constant flash point of disagreement, rather than a rallying point for collaboration.
Siloed teams
Historically, there’s been a dividing line between technical, IT implementers, and less-technical business side consumers. This was partly driven by technology, but reinforced by organizational structures that don’t favor cross team collaboration.
#8: The struggle for dating is ending now. At Snowflake set out to replace these four struggles with performance, concurrency, and simplicity. Here’s how we do it.
#9: Snowflake has a completely new approach to data warehousing that eliminates the struggles from the ground up. You can host all of your data, use it with all of your apps, use the database as a 100% saas, cloud solution, and scale to any size of workload or concurrency.
#10: Our solution gives you all of the things that you need from a data warehouse in the cloud.
-Complete SQL database with ansi Standard SQL. ACID compliant
-Zero management, no tuning or optimization
-All of your data, support for structured, semi-structured, whatever
-All of your users, concurrency is ok with virutal warehouses
-Pay only for what you use
Let’s take a deeper look.
#11: Our own survey of over 300 respondents indicated 80% of database users preferred SQL to query their database.
Being a complete SQL database means Snowflake works the tools business users understand such as ETL and analytics.
Fully ACID-compliant relational database that supports role-based security, multi-statement transactions and a host of other features.
#12: Now detailing the specifics of the value propositions - simplicity
#13: Now detailing the specifics of the value propositions - simplicity
#14: Now detailing the specifics of the value propositions -- concurrency
#15: Pay only for what you use
Pay independently for only the storage and compute used
Scale elastically to match demand
Cloud economies of scale
Leverage low-cost cloud storage
Eliminate need for complex storage tiering
#17: Shared-disk (Oracle): Difficult and expensive to scale and upgrade
Traditional shared-nothing (Netezza and Postgres): Expensive to upgrade, non-native handling of machine data
Hadoop shared nothing: Complex and requires special programming skills
#18: We’ve separated the process of working with information into three distinct layers.
First is the storage layer, where all the data is always stored encrypted and always columnar compressed.
Second is the compute layer comprised of ”virtual warehouses, which are compute nodes that do all of the data processing.
You can have multiple virtual warehouses working on the same data at the same data.
Third is the services layer or the brains of Snowflake. All security information and metadata is stored here, and all query processing is done here.
The services layer also includes all transaction management, which coordinates across all of the virtual warehouses, allowing for a consistent set of operations against the same data at the same time.
Snowflake is the only database that has ever implemented this, and allows Snowflake to essentially scale without limits.
#19: Summarizing Snowflake’s core value propositions
#20: available as a Virtual Private or Dedicated edition