Association rule has been an area of active research in the field of knowledge discovery. Data
mining researchers had improved upon the quality of association rule mining for business
development by incorporating influential factors like value (utility), quantity of items sold
(weight) and more for the mining of association patterns. In this paper, we propose an efficient
approach to find maximal frequent item set first. Most of the algorithms in literature used to find
minimal frequent item first, then with the help of minimal frequent item sets derive the maximal
frequent item sets. These methods consume more time to find maximal frequent item sets. To
overcome this problem, we propose a navel approach to find maximal frequent item set directly using the concepts of subsets. The proposed method is found to be efficient in finding maximal frequent item sets.