SlideShare a Scribd company logo
Tutorial of
Topological Data Analysis
Tran Quoc Hoan
@k09hthaduonght.wordpress.com/
Paper Alert 2016-04-15, Hasegawa lab., Tokyo
The University of Tokyo
Part III - Mapper Algorithm
My TDA = Topology Data Analysis ’s road
TDA Road 2
Part I - Basic concepts &
applications
Part II - Advanced TDA
computation
Part III - Mapper Algorithm
Part V - Applications in…
Part VI - Applications in…
Part IV - Software Roadmap
He is following me
TDA Road Image source: http://www.enseignement.polytechnique.fr/informatique/INF563/
Mapper Algorithm
Basic motivation
Mapper Algorithm 4
Basic idea
Perform clustering at different “scales”, track how
clusters change as scale varies
Motivation
• Coarser than manifold learning, but
still works in nonlinear situation
• Extract meaningful geometric
information about dataset
• Efficiently computable (for large
dataset) Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition.
G Singh, F Mémoli, GE Carlsson - SPBG, 2007
Morse theory
Mapper Algorithm 5
Basic idea
Describe topology of a smooth manifold M using level
sets of a suitable function h : M -> R
• Recover M by looking at h-1((∞, t]), as t scans over the
range of h
• Topology of M changes at critical points of h
Reeb graphs
Mapper Algorithm 6
• For each t in R, contract each
component of f-1(t) to a point
• Resulting structure is a graph
Mapper
Mapper Algorithm 7
The mapper algorithm is a generalization of this procedure (Singh-
Memoli-Carlsson)
Input
✤ Filter (continuous) function f: X -> R
✤ Cover L of im(f) by open intervals:
Method
✤ Cluster each inverse image f-1(Lα) into various connected components
✤ The Mapper is the nerve of V
• Clusters are vertices
• 1 k-simplex per (k+1)-fold intersection
connected cover V
✤ Color vertices according to average value of f in the cluster
k
i=0Vi 6= ;, V0, ..., Vk 2 V
Workflow - Illustration
Mapper Algorithm 8Image source: http://www.enseignement.polytechnique.fr/informatique/INF563/
f could be in n-dimension
Workflow - Illustration
Mapper Algorithm 9Image source: http://www.enseignement.polytechnique.fr/informatique/INF563/
f could be in n-dimension
Workflow - Illustration
Mapper Algorithm 10Image source: http://www.enseignement.polytechnique.fr/informatique/INF563/
f could be in n-dimension
Mapper in practice
Mapper Algorithm 11
Input
✤ Filter (continuous) function f: P -> R
✤ Cover L of im(f) by open intervals:
Method
✤ Cluster each inverse image f-1(Lα) into various connected components
in G
✤ The Mapper is the nerve of V
connected cover V
✤ Color vertices according to average value of f in the cluster
- Point cloud P with metric dP
- Compute neighborhood graph G = (P, E)
• Clusters are vertices
• 1 k-simplex per (k+1)-fold intersection
k
i=0Vi 6= ;, V0, ..., Vk 2 V
(intersections materialized
by data points)
Mapper in practice
Mapper Algorithm 12Image source: http://www.enseignement.polytechnique.fr/informatique/INF563/
Mapper in practice
Mapper Algorithm 13Image source: http://www.enseignement.polytechnique.fr/informatique/INF563/
Mapper in practice
Mapper Algorithm 14Image source: http://www.enseignement.polytechnique.fr/informatique/INF563/
Mapper in practice
Mapper Algorithm 15
Parameters
✤ Filter (continuous) function f: P -> R
✤ Cover L of im(f) by open intervals:
✤ Neighborhood size δ
Example: uniform cover L
• Resolution / granularity: r (diameter of intervals)
• Gain: g (percentage of overlap)
range scale
geometric scale
Filter functions
Mapper Algorithm 16
Choice of filter function is essential
• Some kind of density measure
• A score measure difference (distance) from some baseline
• An eccentricity measure
Statistics

Mean/Max/Min
Variance
n-Moment
Density
…
Machine Learning

PCA/SVD
Auto encoders
Isomap/MDS/TSNE
SVM Distance
Error/Debugging Info
…
Geometry

Centrality

Curvature

Harmonic Cycles
…
Filter functions
Mapper Algorithm 17
Eccentricity
Density
- How close the point lies to the “center” of the point cloud.
- How close the point to the surrounding points
Mapper in applications
Mapper Algorithm 18
Extracting insights from the shape of complex data using topology,
Lum et al., Nature, 2013
Topological Data Analysis for Discovery in Preclinical Spinal Cord
Injury and Traumatic Brain Injury, Nielson et al., Nature, 2015
Using Topological Data Analysis for Diagnosis Pulmonary Embolism,
Rucco et al., arXiv preprint, 2014
Topological Methods for Exploring Low-density States in
Biomolecular Folding Pathways, Yao et al., J. Chemical Physics, 2009
CD8 T-cell reactivity to islet antigens is unique to type 1 while
CD4 T-cell reactivity exists in both type 1 and type 2 diabetes,
Sarikonda et al., J. Autoimmunity, 2013
Innate and adaptive T cells in asthmatic patients: Relationship
to severity and disease mechanisms, Hinks et al., J. Allergy Clinical
Immunology, 2015
✤
✤
✤
✤
✤
✤
Mapper in practice
Mapper Algorithm 19
1. Clustering
2. Feature selection
Mapper in clustering
Mapper Algorithm 20
(1) Compute the Mapper
(2) Detect interesting topological substructures
(“loops”, “flares”)
(3) Use substructure to
cluster data
select parameters
Not easy (Tutorial part 1 + 2)
Mapper Algorithm 21
Extracting insights from the shape of complex data using topology,
Lum et al., Nature, 2013
f: 1st and 2nd SVD r = 120, g = 22%
PCA can show the
Republican/
Democrat cluster
but TDA gives
more information
House Party representative grouping
Point: member of
the House
PCA
Mapper Algorithm 22
Extracting insights from the shape of complex data using topology,
Lum et al., Nature, 2013
Detect new clusters for NBA players
Mapper Algorithm 23
Innate and adaptive T cells in asthmatic patients: Relationship
to severity and disease mechanisms, Hinks et al., J. Allergy Clinical Immunology, 2015
The TDA used 62 subjects
with most complete data.
f: 1st and 2nd SVD
r = 120, g = 14%, equalized
Mapper in feature selection
Mapper Algorithm 24
(1) Compute the Mapper
(2) Detect interesting topological substructures
(“loops”, “flares”)
(3) Select features that best
discriminate data in substructure
select parameters Kolmogorov-Smirnov test on (substructure)
feature vs. (whole dataset) feature,
select features with low p-val
Mapper Algorithm 25
Extracting insights from the shape of complex data using topology,
Lum et al., Nature, 2013
Goal: detect factors that influence survival after therapy in breast cancer patients
Points: breast cancer patients that went through specific therapy
PCA/Single-linkage clustering cannot see this
f: eccentricity
r = 1/30, g = 33%
Mapper Algorithm 26
Topological Data Analysis for Discovery in Preclinical Spinal Cord
Injury and Traumatic Brain Injury, Nielson et al., Nature, 2015
Select Parameters
Mapper Algorithm 27
parameter r
parameter g
parameter δ
parameter f
• Small r -> fine cover 

(close to Reeb) (sensitive to δ)
• Large r -> rough cover 

(less sensitive to δ)
• g ≈ 1 -> more points inside
intersections , less sensitive to
δ but far from Reeb
• g ≈ 0 -> controlled Mapper
dimension, close to Reeb
• Large δ -> fewer nodes, clean
Mapper but far from Reeb
(more straight lines)
• Small δ -> distinct
topological structure but lots
of nodes (noisy)
• Depend mostly on the
dataset
coordinate, density estimation,
eccentricity, eigenvector
Select Parameters
Mapper Algorithm 28
Example: P in R2 sampled from known distribution
f = density estimator, r = 1/30, g = 20%
δ = percentage of the diameter of X
Image source: http://www.enseignement.polytechnique.fr/informatique/INF563/
Reference links
Mapper Algorithm 29
• INF563 Topological Data Analysis Course

http://www.enseignement.polytechnique.fr/informatique/INF563/
• AYASDI

http://www.ayasdi.com/
• …
Ad

More Related Content

What's hot (20)

CCS2019-opological time-series analysis with delay-variant embedding
CCS2019-opological time-series analysis with delay-variant embeddingCCS2019-opological time-series analysis with delay-variant embedding
CCS2019-opological time-series analysis with delay-variant embedding
Ha Phuong
 
2014 3 13(テンソル分解の基礎)
2014 3 13(テンソル分解の基礎)2014 3 13(テンソル分解の基礎)
2014 3 13(テンソル分解の基礎)
Tatsuya Yokota
 
[DL輪読会]Weakly-Supervised Disentanglement Without Compromises
[DL輪読会]Weakly-Supervised Disentanglement Without Compromises[DL輪読会]Weakly-Supervised Disentanglement Without Compromises
[DL輪読会]Weakly-Supervised Disentanglement Without Compromises
Deep Learning JP
 
A direct method for estimating linear non-Gaussian acyclic models
A direct method for estimating linear non-Gaussian acyclic modelsA direct method for estimating linear non-Gaussian acyclic models
A direct method for estimating linear non-Gaussian acyclic models
Shiga University, RIKEN
 
第8章 ガウス過程回帰による異常検知
第8章 ガウス過程回帰による異常検知第8章 ガウス過程回帰による異常検知
第8章 ガウス過程回帰による異常検知
Chika Inoshita
 
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable...
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable...REBAR: Low-variance, unbiased gradient estimates for discrete latent variable...
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable...
Sangwoo Mo
 
Efficient Neural Architecture Searchvia Parameter Sharing
Efficient Neural Architecture Searchvia Parameter SharingEfficient Neural Architecture Searchvia Parameter Sharing
Efficient Neural Architecture Searchvia Parameter Sharing
Taichi Itoh
 
013_20160328_Topological_Measurement_Of_Protein_Compressibility
013_20160328_Topological_Measurement_Of_Protein_Compressibility013_20160328_Topological_Measurement_Of_Protein_Compressibility
013_20160328_Topological_Measurement_Of_Protein_Compressibility
Ha Phuong
 
Non-Gaussian Methods for Learning Linear Structural Equation Models: Part I
Non-Gaussian Methods for Learning Linear Structural Equation Models: Part INon-Gaussian Methods for Learning Linear Structural Equation Models: Part I
Non-Gaussian Methods for Learning Linear Structural Equation Models: Part I
Shiga University, RIKEN
 
Fuzzy Clustering(C-means, K-means)
Fuzzy Clustering(C-means, K-means)Fuzzy Clustering(C-means, K-means)
Fuzzy Clustering(C-means, K-means)
UMBC
 
Dimensionality reduction with UMAP
Dimensionality reduction with UMAPDimensionality reduction with UMAP
Dimensionality reduction with UMAP
Jakub Bartczuk
 
2.mathematics for machine learning
2.mathematics for machine learning2.mathematics for machine learning
2.mathematics for machine learning
KONGU ENGINEERING COLLEGE
 
テンソル多重線形ランクの推定法について(Estimation of Multi-linear Tensor Rank)
テンソル多重線形ランクの推定法について(Estimation of Multi-linear Tensor Rank)テンソル多重線形ランクの推定法について(Estimation of Multi-linear Tensor Rank)
テンソル多重線形ランクの推定法について(Estimation of Multi-linear Tensor Rank)
Tatsuya Yokota
 
Hands on Explainable Recommender Systems with Knowledge Graphs @ RecSys22
Hands on Explainable Recommender Systems with Knowledge Graphs @ RecSys22Hands on Explainable Recommender Systems with Knowledge Graphs @ RecSys22
Hands on Explainable Recommender Systems with Knowledge Graphs @ RecSys22
GiacomoBalloccu
 
[DL輪読会]“Learning to Predict without Looking Ahead: World Models without Forwa...
[DL輪読会]“Learning to Predict without Looking Ahead: World Models without Forwa...[DL輪読会]“Learning to Predict without Looking Ahead: World Models without Forwa...
[DL輪読会]“Learning to Predict without Looking Ahead: World Models without Forwa...
Deep Learning JP
 
ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介
Naoki Hayashi
 
確率的主成分分析
確率的主成分分析確率的主成分分析
確率的主成分分析
Mika Yoshimura
 
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
Deep Learning JP
 
ベイズ推論とシミュレーション法の基礎
ベイズ推論とシミュレーション法の基礎ベイズ推論とシミュレーション法の基礎
ベイズ推論とシミュレーション法の基礎
Tomoshige Nakamura
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究について
Masahiro Suzuki
 
CCS2019-opological time-series analysis with delay-variant embedding
CCS2019-opological time-series analysis with delay-variant embeddingCCS2019-opological time-series analysis with delay-variant embedding
CCS2019-opological time-series analysis with delay-variant embedding
Ha Phuong
 
2014 3 13(テンソル分解の基礎)
2014 3 13(テンソル分解の基礎)2014 3 13(テンソル分解の基礎)
2014 3 13(テンソル分解の基礎)
Tatsuya Yokota
 
[DL輪読会]Weakly-Supervised Disentanglement Without Compromises
[DL輪読会]Weakly-Supervised Disentanglement Without Compromises[DL輪読会]Weakly-Supervised Disentanglement Without Compromises
[DL輪読会]Weakly-Supervised Disentanglement Without Compromises
Deep Learning JP
 
A direct method for estimating linear non-Gaussian acyclic models
A direct method for estimating linear non-Gaussian acyclic modelsA direct method for estimating linear non-Gaussian acyclic models
A direct method for estimating linear non-Gaussian acyclic models
Shiga University, RIKEN
 
第8章 ガウス過程回帰による異常検知
第8章 ガウス過程回帰による異常検知第8章 ガウス過程回帰による異常検知
第8章 ガウス過程回帰による異常検知
Chika Inoshita
 
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable...
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable...REBAR: Low-variance, unbiased gradient estimates for discrete latent variable...
REBAR: Low-variance, unbiased gradient estimates for discrete latent variable...
Sangwoo Mo
 
Efficient Neural Architecture Searchvia Parameter Sharing
Efficient Neural Architecture Searchvia Parameter SharingEfficient Neural Architecture Searchvia Parameter Sharing
Efficient Neural Architecture Searchvia Parameter Sharing
Taichi Itoh
 
013_20160328_Topological_Measurement_Of_Protein_Compressibility
013_20160328_Topological_Measurement_Of_Protein_Compressibility013_20160328_Topological_Measurement_Of_Protein_Compressibility
013_20160328_Topological_Measurement_Of_Protein_Compressibility
Ha Phuong
 
Non-Gaussian Methods for Learning Linear Structural Equation Models: Part I
Non-Gaussian Methods for Learning Linear Structural Equation Models: Part INon-Gaussian Methods for Learning Linear Structural Equation Models: Part I
Non-Gaussian Methods for Learning Linear Structural Equation Models: Part I
Shiga University, RIKEN
 
Fuzzy Clustering(C-means, K-means)
Fuzzy Clustering(C-means, K-means)Fuzzy Clustering(C-means, K-means)
Fuzzy Clustering(C-means, K-means)
UMBC
 
Dimensionality reduction with UMAP
Dimensionality reduction with UMAPDimensionality reduction with UMAP
Dimensionality reduction with UMAP
Jakub Bartczuk
 
テンソル多重線形ランクの推定法について(Estimation of Multi-linear Tensor Rank)
テンソル多重線形ランクの推定法について(Estimation of Multi-linear Tensor Rank)テンソル多重線形ランクの推定法について(Estimation of Multi-linear Tensor Rank)
テンソル多重線形ランクの推定法について(Estimation of Multi-linear Tensor Rank)
Tatsuya Yokota
 
Hands on Explainable Recommender Systems with Knowledge Graphs @ RecSys22
Hands on Explainable Recommender Systems with Knowledge Graphs @ RecSys22Hands on Explainable Recommender Systems with Knowledge Graphs @ RecSys22
Hands on Explainable Recommender Systems with Knowledge Graphs @ RecSys22
GiacomoBalloccu
 
[DL輪読会]“Learning to Predict without Looking Ahead: World Models without Forwa...
[DL輪読会]“Learning to Predict without Looking Ahead: World Models without Forwa...[DL輪読会]“Learning to Predict without Looking Ahead: World Models without Forwa...
[DL輪読会]“Learning to Predict without Looking Ahead: World Models without Forwa...
Deep Learning JP
 
ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介
Naoki Hayashi
 
確率的主成分分析
確率的主成分分析確率的主成分分析
確率的主成分分析
Mika Yoshimura
 
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
[DL輪読会]Recent Advances in Autoencoder-Based Representation Learning
Deep Learning JP
 
ベイズ推論とシミュレーション法の基礎
ベイズ推論とシミュレーション法の基礎ベイズ推論とシミュレーション法の基礎
ベイズ推論とシミュレーション法の基礎
Tomoshige Nakamura
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究について
Masahiro Suzuki
 

Similar to Tutorial of topological data analysis part 3(Mapper algorithm) (20)

How to Decide the Best Fuzzy Model in ANFIS
How to Decide the Best Fuzzy Model in ANFIS How to Decide the Best Fuzzy Model in ANFIS
How to Decide the Best Fuzzy Model in ANFIS
International Journal of Modern Research in Engineering and Technology
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
A walk through the intersection between machine learning and mechanistic mode...
A walk through the intersection between machine learning and mechanistic mode...A walk through the intersection between machine learning and mechanistic mode...
A walk through the intersection between machine learning and mechanistic mode...
JuanPabloCarbajal3
 
Kernel based similarity estimation and real time tracking of moving
Kernel based similarity estimation and real time tracking of movingKernel based similarity estimation and real time tracking of moving
Kernel based similarity estimation and real time tracking of moving
IAEME Publication
 
Vol 9 No 1 - January 2014
Vol 9 No 1 - January 2014Vol 9 No 1 - January 2014
Vol 9 No 1 - January 2014
ijcsbi
 
[20240819_LabSeminar_Huy]Learning Decomposed Spatial Relations for Multi-Vari...
[20240819_LabSeminar_Huy]Learning Decomposed Spatial Relations for Multi-Vari...[20240819_LabSeminar_Huy]Learning Decomposed Spatial Relations for Multi-Vari...
[20240819_LabSeminar_Huy]Learning Decomposed Spatial Relations for Multi-Vari...
thanhdowork
 
ME Synopsis
ME SynopsisME Synopsis
ME Synopsis
Poonam Debnath
 
A Novel Approach to Mathematical Concepts in Data Mining
A Novel Approach to Mathematical Concepts in Data MiningA Novel Approach to Mathematical Concepts in Data Mining
A Novel Approach to Mathematical Concepts in Data Mining
ijdmtaiir
 
A general multiobjective clustering approach based on multiple distance measures
A general multiobjective clustering approach based on multiple distance measuresA general multiobjective clustering approach based on multiple distance measures
A general multiobjective clustering approach based on multiple distance measures
Mehran Mesbahzadeh
 
OPTIMAL GLOBAL THRESHOLD ESTIMATION USING STATISTICAL CHANGE-POINT DETECTION
OPTIMAL GLOBAL THRESHOLD ESTIMATION USING STATISTICAL CHANGE-POINT DETECTIONOPTIMAL GLOBAL THRESHOLD ESTIMATION USING STATISTICAL CHANGE-POINT DETECTION
OPTIMAL GLOBAL THRESHOLD ESTIMATION USING STATISTICAL CHANGE-POINT DETECTION
sipij
 
Pca part
Pca partPca part
Pca part
Bhumika Sharma
 
FARSI CHARACTER RECOGNITION USING NEW HYBRID FEATURE EXTRACTION METHODS
FARSI CHARACTER RECOGNITION USING NEW HYBRID FEATURE EXTRACTION METHODSFARSI CHARACTER RECOGNITION USING NEW HYBRID FEATURE EXTRACTION METHODS
FARSI CHARACTER RECOGNITION USING NEW HYBRID FEATURE EXTRACTION METHODS
ijcseit
 
Farsi character recognition using new hybrid feature extraction methods
Farsi character recognition using new hybrid feature extraction methodsFarsi character recognition using new hybrid feature extraction methods
Farsi character recognition using new hybrid feature extraction methods
ijcseit
 
International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...
ijcseit
 
fuzzy LBP for face recognition ppt
fuzzy LBP for face recognition pptfuzzy LBP for face recognition ppt
fuzzy LBP for face recognition ppt
Abdullah Gubbi
 
Citython presentation
Citython presentationCitython presentation
Citython presentation
Ankit Tewari
 
[20240703_LabSeminar_Huy]MakeGNNGreatAgain.pptx
[20240703_LabSeminar_Huy]MakeGNNGreatAgain.pptx[20240703_LabSeminar_Huy]MakeGNNGreatAgain.pptx
[20240703_LabSeminar_Huy]MakeGNNGreatAgain.pptx
thanhdowork
 
Применение машинного обучения для навигации и управления роботами
Применение машинного обучения для навигации и управления роботамиПрименение машинного обучения для навигации и управления роботами
Применение машинного обучения для навигации и управления роботами
Skolkovo Robotics Center
 
Interpolation of-geofield-parameters
Interpolation of-geofield-parametersInterpolation of-geofield-parameters
Interpolation of-geofield-parameters
Cemal Ardil
 
Ill-posedness formulation of the emission source localization in the radio- d...
Ill-posedness formulation of the emission source localization in the radio- d...Ill-posedness formulation of the emission source localization in the radio- d...
Ill-posedness formulation of the emission source localization in the radio- d...
Ahmed Ammar Rebai PhD
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
A walk through the intersection between machine learning and mechanistic mode...
A walk through the intersection between machine learning and mechanistic mode...A walk through the intersection between machine learning and mechanistic mode...
A walk through the intersection between machine learning and mechanistic mode...
JuanPabloCarbajal3
 
Kernel based similarity estimation and real time tracking of moving
Kernel based similarity estimation and real time tracking of movingKernel based similarity estimation and real time tracking of moving
Kernel based similarity estimation and real time tracking of moving
IAEME Publication
 
Vol 9 No 1 - January 2014
Vol 9 No 1 - January 2014Vol 9 No 1 - January 2014
Vol 9 No 1 - January 2014
ijcsbi
 
[20240819_LabSeminar_Huy]Learning Decomposed Spatial Relations for Multi-Vari...
[20240819_LabSeminar_Huy]Learning Decomposed Spatial Relations for Multi-Vari...[20240819_LabSeminar_Huy]Learning Decomposed Spatial Relations for Multi-Vari...
[20240819_LabSeminar_Huy]Learning Decomposed Spatial Relations for Multi-Vari...
thanhdowork
 
A Novel Approach to Mathematical Concepts in Data Mining
A Novel Approach to Mathematical Concepts in Data MiningA Novel Approach to Mathematical Concepts in Data Mining
A Novel Approach to Mathematical Concepts in Data Mining
ijdmtaiir
 
A general multiobjective clustering approach based on multiple distance measures
A general multiobjective clustering approach based on multiple distance measuresA general multiobjective clustering approach based on multiple distance measures
A general multiobjective clustering approach based on multiple distance measures
Mehran Mesbahzadeh
 
OPTIMAL GLOBAL THRESHOLD ESTIMATION USING STATISTICAL CHANGE-POINT DETECTION
OPTIMAL GLOBAL THRESHOLD ESTIMATION USING STATISTICAL CHANGE-POINT DETECTIONOPTIMAL GLOBAL THRESHOLD ESTIMATION USING STATISTICAL CHANGE-POINT DETECTION
OPTIMAL GLOBAL THRESHOLD ESTIMATION USING STATISTICAL CHANGE-POINT DETECTION
sipij
 
FARSI CHARACTER RECOGNITION USING NEW HYBRID FEATURE EXTRACTION METHODS
FARSI CHARACTER RECOGNITION USING NEW HYBRID FEATURE EXTRACTION METHODSFARSI CHARACTER RECOGNITION USING NEW HYBRID FEATURE EXTRACTION METHODS
FARSI CHARACTER RECOGNITION USING NEW HYBRID FEATURE EXTRACTION METHODS
ijcseit
 
Farsi character recognition using new hybrid feature extraction methods
Farsi character recognition using new hybrid feature extraction methodsFarsi character recognition using new hybrid feature extraction methods
Farsi character recognition using new hybrid feature extraction methods
ijcseit
 
International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...International Journal of Computer Science, Engineering and Information Techno...
International Journal of Computer Science, Engineering and Information Techno...
ijcseit
 
fuzzy LBP for face recognition ppt
fuzzy LBP for face recognition pptfuzzy LBP for face recognition ppt
fuzzy LBP for face recognition ppt
Abdullah Gubbi
 
Citython presentation
Citython presentationCitython presentation
Citython presentation
Ankit Tewari
 
[20240703_LabSeminar_Huy]MakeGNNGreatAgain.pptx
[20240703_LabSeminar_Huy]MakeGNNGreatAgain.pptx[20240703_LabSeminar_Huy]MakeGNNGreatAgain.pptx
[20240703_LabSeminar_Huy]MakeGNNGreatAgain.pptx
thanhdowork
 
Применение машинного обучения для навигации и управления роботами
Применение машинного обучения для навигации и управления роботамиПрименение машинного обучения для навигации и управления роботами
Применение машинного обучения для навигации и управления роботами
Skolkovo Robotics Center
 
Interpolation of-geofield-parameters
Interpolation of-geofield-parametersInterpolation of-geofield-parameters
Interpolation of-geofield-parameters
Cemal Ardil
 
Ill-posedness formulation of the emission source localization in the radio- d...
Ill-posedness formulation of the emission source localization in the radio- d...Ill-posedness formulation of the emission source localization in the radio- d...
Ill-posedness formulation of the emission source localization in the radio- d...
Ahmed Ammar Rebai PhD
 
Ad

More from Ha Phuong (20)

QTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature MapQTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature Map
Ha Phuong
 
018 20160902 Machine Learning Framework for Analysis of Transport through Com...
018 20160902 Machine Learning Framework for Analysis of Transport through Com...018 20160902 Machine Learning Framework for Analysis of Transport through Com...
018 20160902 Machine Learning Framework for Analysis of Transport through Com...
Ha Phuong
 
017_20160826 Thermodynamics Of Stochastic Turing Machines
017_20160826 Thermodynamics Of Stochastic Turing Machines017_20160826 Thermodynamics Of Stochastic Turing Machines
017_20160826 Thermodynamics Of Stochastic Turing Machines
Ha Phuong
 
016_20160722 Molecular Circuits For Dynamic Noise Filtering
016_20160722 Molecular Circuits For Dynamic Noise Filtering016_20160722 Molecular Circuits For Dynamic Noise Filtering
016_20160722 Molecular Circuits For Dynamic Noise Filtering
Ha Phuong
 
015_20160422 Controlling Synchronous Patterns In Complex Networks
015_20160422 Controlling Synchronous Patterns In Complex Networks015_20160422 Controlling Synchronous Patterns In Complex Networks
015_20160422 Controlling Synchronous Patterns In Complex Networks
Ha Phuong
 
011_20160321_Topological_data_analysis_of_contagion_map
011_20160321_Topological_data_analysis_of_contagion_map011_20160321_Topological_data_analysis_of_contagion_map
011_20160321_Topological_data_analysis_of_contagion_map
Ha Phuong
 
010_20160216_Variational Gaussian Process
010_20160216_Variational Gaussian Process010_20160216_Variational Gaussian Process
010_20160216_Variational Gaussian Process
Ha Phuong
 
009_20150201_Structural Inference for Uncertain Networks
009_20150201_Structural Inference for Uncertain Networks009_20150201_Structural Inference for Uncertain Networks
009_20150201_Structural Inference for Uncertain Networks
Ha Phuong
 
PRML Reading Chapter 11 - Sampling Method
PRML Reading Chapter 11 - Sampling MethodPRML Reading Chapter 11 - Sampling Method
PRML Reading Chapter 11 - Sampling Method
Ha Phuong
 
Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)
Ha Phuong
 
008 20151221 Return of Frustrating Easy Domain Adaptation
008 20151221 Return of Frustrating Easy Domain Adaptation008 20151221 Return of Frustrating Easy Domain Adaptation
008 20151221 Return of Frustrating Easy Domain Adaptation
Ha Phuong
 
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
Ha Phuong
 
006 20151207 draws - Deep Recurrent Attentive Writer
006 20151207 draws - Deep Recurrent Attentive Writer006 20151207 draws - Deep Recurrent Attentive Writer
006 20151207 draws - Deep Recurrent Attentive Writer
Ha Phuong
 
005 20151130 adversary_networks
005 20151130 adversary_networks005 20151130 adversary_networks
005 20151130 adversary_networks
Ha Phuong
 
004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamics
004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamics004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamics
004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamics
Ha Phuong
 
003 20151109 nn_faster_andfaster
003 20151109 nn_faster_andfaster003 20151109 nn_faster_andfaster
003 20151109 nn_faster_andfaster
Ha Phuong
 
002 20151019 interconnected_network
002 20151019 interconnected_network002 20151019 interconnected_network
002 20151019 interconnected_network
Ha Phuong
 
001 20151005 ranking_nodesingrowingnetwork
001 20151005 ranking_nodesingrowingnetwork001 20151005 ranking_nodesingrowingnetwork
001 20151005 ranking_nodesingrowingnetwork
Ha Phuong
 
Deep Learning And Business Models (VNITC 2015-09-13)
Deep Learning And Business Models (VNITC 2015-09-13)Deep Learning And Business Models (VNITC 2015-09-13)
Deep Learning And Business Models (VNITC 2015-09-13)
Ha Phuong
 
Prediction io–final 2014-jp-handout
Prediction io–final 2014-jp-handoutPrediction io–final 2014-jp-handout
Prediction io–final 2014-jp-handout
Ha Phuong
 
QTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature MapQTML2021 UAP Quantum Feature Map
QTML2021 UAP Quantum Feature Map
Ha Phuong
 
018 20160902 Machine Learning Framework for Analysis of Transport through Com...
018 20160902 Machine Learning Framework for Analysis of Transport through Com...018 20160902 Machine Learning Framework for Analysis of Transport through Com...
018 20160902 Machine Learning Framework for Analysis of Transport through Com...
Ha Phuong
 
017_20160826 Thermodynamics Of Stochastic Turing Machines
017_20160826 Thermodynamics Of Stochastic Turing Machines017_20160826 Thermodynamics Of Stochastic Turing Machines
017_20160826 Thermodynamics Of Stochastic Turing Machines
Ha Phuong
 
016_20160722 Molecular Circuits For Dynamic Noise Filtering
016_20160722 Molecular Circuits For Dynamic Noise Filtering016_20160722 Molecular Circuits For Dynamic Noise Filtering
016_20160722 Molecular Circuits For Dynamic Noise Filtering
Ha Phuong
 
015_20160422 Controlling Synchronous Patterns In Complex Networks
015_20160422 Controlling Synchronous Patterns In Complex Networks015_20160422 Controlling Synchronous Patterns In Complex Networks
015_20160422 Controlling Synchronous Patterns In Complex Networks
Ha Phuong
 
011_20160321_Topological_data_analysis_of_contagion_map
011_20160321_Topological_data_analysis_of_contagion_map011_20160321_Topological_data_analysis_of_contagion_map
011_20160321_Topological_data_analysis_of_contagion_map
Ha Phuong
 
010_20160216_Variational Gaussian Process
010_20160216_Variational Gaussian Process010_20160216_Variational Gaussian Process
010_20160216_Variational Gaussian Process
Ha Phuong
 
009_20150201_Structural Inference for Uncertain Networks
009_20150201_Structural Inference for Uncertain Networks009_20150201_Structural Inference for Uncertain Networks
009_20150201_Structural Inference for Uncertain Networks
Ha Phuong
 
PRML Reading Chapter 11 - Sampling Method
PRML Reading Chapter 11 - Sampling MethodPRML Reading Chapter 11 - Sampling Method
PRML Reading Chapter 11 - Sampling Method
Ha Phuong
 
Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)Approximate Inference (Chapter 10, PRML Reading)
Approximate Inference (Chapter 10, PRML Reading)
Ha Phuong
 
008 20151221 Return of Frustrating Easy Domain Adaptation
008 20151221 Return of Frustrating Easy Domain Adaptation008 20151221 Return of Frustrating Easy Domain Adaptation
008 20151221 Return of Frustrating Easy Domain Adaptation
Ha Phuong
 
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
007 20151214 Deep Unsupervised Learning using Nonequlibrium Thermodynamics
Ha Phuong
 
006 20151207 draws - Deep Recurrent Attentive Writer
006 20151207 draws - Deep Recurrent Attentive Writer006 20151207 draws - Deep Recurrent Attentive Writer
006 20151207 draws - Deep Recurrent Attentive Writer
Ha Phuong
 
005 20151130 adversary_networks
005 20151130 adversary_networks005 20151130 adversary_networks
005 20151130 adversary_networks
Ha Phuong
 
004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamics
004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamics004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamics
004 20151116 deep_unsupervisedlearningusingnonequlibriumthermodynamics
Ha Phuong
 
003 20151109 nn_faster_andfaster
003 20151109 nn_faster_andfaster003 20151109 nn_faster_andfaster
003 20151109 nn_faster_andfaster
Ha Phuong
 
002 20151019 interconnected_network
002 20151019 interconnected_network002 20151019 interconnected_network
002 20151019 interconnected_network
Ha Phuong
 
001 20151005 ranking_nodesingrowingnetwork
001 20151005 ranking_nodesingrowingnetwork001 20151005 ranking_nodesingrowingnetwork
001 20151005 ranking_nodesingrowingnetwork
Ha Phuong
 
Deep Learning And Business Models (VNITC 2015-09-13)
Deep Learning And Business Models (VNITC 2015-09-13)Deep Learning And Business Models (VNITC 2015-09-13)
Deep Learning And Business Models (VNITC 2015-09-13)
Ha Phuong
 
Prediction io–final 2014-jp-handout
Prediction io–final 2014-jp-handoutPrediction io–final 2014-jp-handout
Prediction io–final 2014-jp-handout
Ha Phuong
 
Ad

Recently uploaded (20)

Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 

Tutorial of topological data analysis part 3(Mapper algorithm)

  • 1. Tutorial of Topological Data Analysis Tran Quoc Hoan @k09hthaduonght.wordpress.com/ Paper Alert 2016-04-15, Hasegawa lab., Tokyo The University of Tokyo Part III - Mapper Algorithm
  • 2. My TDA = Topology Data Analysis ’s road TDA Road 2 Part I - Basic concepts & applications Part II - Advanced TDA computation Part III - Mapper Algorithm Part V - Applications in… Part VI - Applications in… Part IV - Software Roadmap He is following me
  • 3. TDA Road Image source: http://www.enseignement.polytechnique.fr/informatique/INF563/ Mapper Algorithm
  • 4. Basic motivation Mapper Algorithm 4 Basic idea Perform clustering at different “scales”, track how clusters change as scale varies Motivation • Coarser than manifold learning, but still works in nonlinear situation • Extract meaningful geometric information about dataset • Efficiently computable (for large dataset) Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition. G Singh, F Mémoli, GE Carlsson - SPBG, 2007
  • 5. Morse theory Mapper Algorithm 5 Basic idea Describe topology of a smooth manifold M using level sets of a suitable function h : M -> R • Recover M by looking at h-1((∞, t]), as t scans over the range of h • Topology of M changes at critical points of h
  • 6. Reeb graphs Mapper Algorithm 6 • For each t in R, contract each component of f-1(t) to a point • Resulting structure is a graph
  • 7. Mapper Mapper Algorithm 7 The mapper algorithm is a generalization of this procedure (Singh- Memoli-Carlsson) Input ✤ Filter (continuous) function f: X -> R ✤ Cover L of im(f) by open intervals: Method ✤ Cluster each inverse image f-1(Lα) into various connected components ✤ The Mapper is the nerve of V • Clusters are vertices • 1 k-simplex per (k+1)-fold intersection connected cover V ✤ Color vertices according to average value of f in the cluster k i=0Vi 6= ;, V0, ..., Vk 2 V
  • 8. Workflow - Illustration Mapper Algorithm 8Image source: http://www.enseignement.polytechnique.fr/informatique/INF563/ f could be in n-dimension
  • 9. Workflow - Illustration Mapper Algorithm 9Image source: http://www.enseignement.polytechnique.fr/informatique/INF563/ f could be in n-dimension
  • 10. Workflow - Illustration Mapper Algorithm 10Image source: http://www.enseignement.polytechnique.fr/informatique/INF563/ f could be in n-dimension
  • 11. Mapper in practice Mapper Algorithm 11 Input ✤ Filter (continuous) function f: P -> R ✤ Cover L of im(f) by open intervals: Method ✤ Cluster each inverse image f-1(Lα) into various connected components in G ✤ The Mapper is the nerve of V connected cover V ✤ Color vertices according to average value of f in the cluster - Point cloud P with metric dP - Compute neighborhood graph G = (P, E) • Clusters are vertices • 1 k-simplex per (k+1)-fold intersection k i=0Vi 6= ;, V0, ..., Vk 2 V (intersections materialized by data points)
  • 12. Mapper in practice Mapper Algorithm 12Image source: http://www.enseignement.polytechnique.fr/informatique/INF563/
  • 13. Mapper in practice Mapper Algorithm 13Image source: http://www.enseignement.polytechnique.fr/informatique/INF563/
  • 14. Mapper in practice Mapper Algorithm 14Image source: http://www.enseignement.polytechnique.fr/informatique/INF563/
  • 15. Mapper in practice Mapper Algorithm 15 Parameters ✤ Filter (continuous) function f: P -> R ✤ Cover L of im(f) by open intervals: ✤ Neighborhood size δ Example: uniform cover L • Resolution / granularity: r (diameter of intervals) • Gain: g (percentage of overlap) range scale geometric scale
  • 16. Filter functions Mapper Algorithm 16 Choice of filter function is essential • Some kind of density measure • A score measure difference (distance) from some baseline • An eccentricity measure Statistics
 Mean/Max/Min Variance n-Moment Density … Machine Learning
 PCA/SVD Auto encoders Isomap/MDS/TSNE SVM Distance Error/Debugging Info … Geometry
 Centrality
 Curvature
 Harmonic Cycles …
  • 17. Filter functions Mapper Algorithm 17 Eccentricity Density - How close the point lies to the “center” of the point cloud. - How close the point to the surrounding points
  • 18. Mapper in applications Mapper Algorithm 18 Extracting insights from the shape of complex data using topology, Lum et al., Nature, 2013 Topological Data Analysis for Discovery in Preclinical Spinal Cord Injury and Traumatic Brain Injury, Nielson et al., Nature, 2015 Using Topological Data Analysis for Diagnosis Pulmonary Embolism, Rucco et al., arXiv preprint, 2014 Topological Methods for Exploring Low-density States in Biomolecular Folding Pathways, Yao et al., J. Chemical Physics, 2009 CD8 T-cell reactivity to islet antigens is unique to type 1 while CD4 T-cell reactivity exists in both type 1 and type 2 diabetes, Sarikonda et al., J. Autoimmunity, 2013 Innate and adaptive T cells in asthmatic patients: Relationship to severity and disease mechanisms, Hinks et al., J. Allergy Clinical Immunology, 2015 ✤ ✤ ✤ ✤ ✤ ✤
  • 19. Mapper in practice Mapper Algorithm 19 1. Clustering 2. Feature selection
  • 20. Mapper in clustering Mapper Algorithm 20 (1) Compute the Mapper (2) Detect interesting topological substructures (“loops”, “flares”) (3) Use substructure to cluster data select parameters Not easy (Tutorial part 1 + 2)
  • 21. Mapper Algorithm 21 Extracting insights from the shape of complex data using topology, Lum et al., Nature, 2013 f: 1st and 2nd SVD r = 120, g = 22% PCA can show the Republican/ Democrat cluster but TDA gives more information House Party representative grouping Point: member of the House PCA
  • 22. Mapper Algorithm 22 Extracting insights from the shape of complex data using topology, Lum et al., Nature, 2013 Detect new clusters for NBA players
  • 23. Mapper Algorithm 23 Innate and adaptive T cells in asthmatic patients: Relationship to severity and disease mechanisms, Hinks et al., J. Allergy Clinical Immunology, 2015 The TDA used 62 subjects with most complete data. f: 1st and 2nd SVD r = 120, g = 14%, equalized
  • 24. Mapper in feature selection Mapper Algorithm 24 (1) Compute the Mapper (2) Detect interesting topological substructures (“loops”, “flares”) (3) Select features that best discriminate data in substructure select parameters Kolmogorov-Smirnov test on (substructure) feature vs. (whole dataset) feature, select features with low p-val
  • 25. Mapper Algorithm 25 Extracting insights from the shape of complex data using topology, Lum et al., Nature, 2013 Goal: detect factors that influence survival after therapy in breast cancer patients Points: breast cancer patients that went through specific therapy PCA/Single-linkage clustering cannot see this f: eccentricity r = 1/30, g = 33%
  • 26. Mapper Algorithm 26 Topological Data Analysis for Discovery in Preclinical Spinal Cord Injury and Traumatic Brain Injury, Nielson et al., Nature, 2015
  • 27. Select Parameters Mapper Algorithm 27 parameter r parameter g parameter δ parameter f • Small r -> fine cover 
 (close to Reeb) (sensitive to δ) • Large r -> rough cover 
 (less sensitive to δ) • g ≈ 1 -> more points inside intersections , less sensitive to δ but far from Reeb • g ≈ 0 -> controlled Mapper dimension, close to Reeb • Large δ -> fewer nodes, clean Mapper but far from Reeb (more straight lines) • Small δ -> distinct topological structure but lots of nodes (noisy) • Depend mostly on the dataset coordinate, density estimation, eccentricity, eigenvector
  • 28. Select Parameters Mapper Algorithm 28 Example: P in R2 sampled from known distribution f = density estimator, r = 1/30, g = 20% δ = percentage of the diameter of X Image source: http://www.enseignement.polytechnique.fr/informatique/INF563/
  • 29. Reference links Mapper Algorithm 29 • INF563 Topological Data Analysis Course
 http://www.enseignement.polytechnique.fr/informatique/INF563/ • AYASDI
 http://www.ayasdi.com/ • …