Slides for the "generalization" session of our CVPR 2022 tutorial on Neural Fields in Computer Vision.
Neural Fields are an emerging technique to parameterize signals that live in spatial coordinates plus time. They parameterize a signal as a continuous function that maps a space-time coordinate to whatever is at that spacetime coordinate - for instance, the geometry of a 3D scene could be encoded in a function that maps a 3D coordinate to whether that coordinate is occupied or not. A neural field parameterizes that function as a neural network.
In this session, I gave a high-level overview over how we may use neural fields as the output of a variety of inference algorithms, for instance to reconstruct a complete 3D shape from partial observations in the form of a pointcloud, or to reconstruct a 3D scene from only a single image.
You are free to use the slides for any purpose, as long as you keep a note on the slides that acknowledges their source.
Neural Fields database: https://neuralfields.cs.brown.edu/
Tutorial website: https://neuralfields.cs.brown.edu/cvpr22