SlideShare a Scribd company logo
Uncalibrated Image-based Control of Robots Azad Shademan PhD Candidate Computing Science, University of Alberta Edmonton, Alberta, CANADA [email_address]
Vision-Based Control A A A B B B current desired Left Image Right Image
Vision-Based Control Left Image Right Image B B B
Where is the camera located? Eye-to-Hand  e.g.,hand/eye coordination Eye-in-Hand
Vision-Based Control Feedback from visual sensor (camera) to control a robot Also called  visual servoing Visual servoing is the task of minimizing a visually specified objective by giving appropriate control commands to a robot Is it any  difficult ? Images are 2D, the robot workspace is 3D 2D data    3D geometry
Visual Servo Control law Position-Based: Robust and real-time pose estimation + robot’s world-space (Cartesian) controller Image-Based: Desired image features seen from camera Control law entirely based on image features Hybrid: Depth information is added to image data to increase stability
Position-Based Robust and real-time relative pose estimation  E xtended  K alman  F ilter to solve the  nonlinear  relative pose equations.  Cons: EKF is not the optimal estimator. Performance and the convergence of  pose estimates are highly  sensitive  to EKF parameters.
Position-Based Desired pose Estimated pose
Position-Based  Measurement noise State variable Process noise yaw pitch roll Measurement equation (projection) is nonlinear and must be linearized.
K x k-1,k-1 z k R k P k,k P k,k-1 C k Q k-1 x k,k x k,k-1 P k-1,k-1 Kalman Gain Measurement noise covariance A priori error cov. @  k-1 Process noise covariance Initial/previous state Linearization Measurement State update State prediction Error cov. prediction Error cov. update
Image-Based Desired  Image feature Extracted  image feature
Visual-motor Equation x 1 x 2 x 3 x 4 q=[q 1  … q 6 ] Visual-Motor Equation This Jacobian is important  for motion control.
Visual-motor Jacobian Image space velocity Joint space velocity A A B B
Image-Based Control Law Measure the error in image space Calculate/Estimate the inverse Jacobian Update new joint values
Image-Based Control Law Desired  Image feature Extracted  image feature
Jacobian calculation Analytic form available if model is known. Known model     Calibrated Must be  estimated  if model is not known Unknown model     Uncalibrated
Calibrated: Interaction Matrix Analytic form  depends on depth estimates. Camera/Robot transform required. No flexibility. Camera Velocity
Uncalibrated: Visual-Motor Jacobian A naïve method:  Orthogonal projections
Uncalibrated: Visual-Motor Jacobian A naïve method: Orthogonal projections
Uncalibrated: Visual-Motor Jacobian A naïve method: Orthogonal projections …
Uncalibrated: Visual-Motor Jacobian A popular local estimator: Recursive secant method (Broyden update):
Relaxed model assumptions Traditionally: Local methods  No global planning (-) Difficult  to show asymptotic stability condition is ensured (-) Main problem of traditional methods is the locality. Calibrated vs. Uncalibrated Model derived analytically  Global asymptotic stability (+)  Optimal planning is possible (+) A lot of prior knowledge on the model (-) Global Model Estimation ( Research result ) Optimal trajectory planning  (+)  Global stability guarantee  (+)
Synopsis of Global Visual Servoing Model Estimation (Uncalibrated) Visual-Motor Kinematics Model Global Model Extending Linear Estimation (Visual-Motor Jacobian) to Nonlinear Estimation Our contributions: K-NN Regression-Based Estimation Locally Least Squares Estimation
Local vs. Global  Key idea:  using only the previous estimation to estimate the Jacobian RLS with forgetting factor  Hosoda and Asada ’94 1 st  Rank Broyden update:  Jägersand  et al. ’97 Exploratory motion:  Sutanto et al. ‘98 Quasi-Newton Jacobian estimation of moving object:  Piepmeier et al. ‘04 Key idea:  using all of the interaction history to estimate the Jacobian Globally-Stable controller design Optimal path planning Local methods don’t!
K-NN Regression-based Method q 1 q 2 3 NN q 1 q 2 x 1 ?
(X,q) L ocally  L east  S quares Method q 1 q 2 x 1 ? K-neighbour(q)
Eye-to-hand Experiments Puma 560 Stereo vision Features: projection of the end-effector’s position on image planes (4-dim) 3 DOF for control
Measuring the Estimation Error
Global Estimation Error
Visual Task Specification Image Features: Geometric primitives (points, lines, etc.) Higher order image moments Shape parameters … Visual Tasks Point-to-point (point alignment) Point-to-line (colinearity) Point-to-plane (coplanarity) …
Eye-in-hand
Eye-in-Hand Experiments
Eye-in-Hand Experiments
Eye-in-Hand Experiments
Eye-in-Hand Experiments
Mean-Squared-Error Task 1 Task 2
Task Errors
 
Conclusions Reviewed position-based and image-based visual servoing schemes. Presented  two global methods  to learn the visual-motor function. KNN suffers from the bias in local estimations. LLS (global) works better than the KNN (global) and local updates. The Jacobian of more complex visual tasks can also be learned using LLS method. [email_address]
Thank you!
Visual Ambiguity: Single Camera
Visual Ambiguity: Stereo
Ad

More Related Content

Similar to Uncalibrated Image-Based Robotic Visual Servoing (knowdiff.net) (20)

Visual odometry & slam utilizing indoor structured environments
Visual odometry & slam utilizing indoor structured environmentsVisual odometry & slam utilizing indoor structured environments
Visual odometry & slam utilizing indoor structured environments
NAVER Engineering
 
426 Lecture5: AR Registration
426 Lecture5: AR Registration426 Lecture5: AR Registration
426 Lecture5: AR Registration
Mark Billinghurst
 
DTAM: Dense Tracking and Mapping in Real-Time, Robot vision Group
DTAM: Dense Tracking and Mapping in Real-Time, Robot vision GroupDTAM: Dense Tracking and Mapping in Real-Time, Robot vision Group
DTAM: Dense Tracking and Mapping in Real-Time, Robot vision Group
Lihang Li
 
Optical Computing for Fast Light Transport Analysis
Optical Computing for Fast Light Transport AnalysisOptical Computing for Fast Light Transport Analysis
Optical Computing for Fast Light Transport Analysis
Matthew O'Toole
 
presentation.ppt
presentation.pptpresentation.ppt
presentation.ppt
SandyDwiKurniawan2
 
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
grssieee
 
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
grssieee
 
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
grssieee
 
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
grssieee
 
Stixel based real time object detection for ADAS using surface normal
Stixel based real time object detection for ADAS using surface normalStixel based real time object detection for ADAS using surface normal
Stixel based real time object detection for ADAS using surface normal
TaeKang Woo
 
Tracking[1]
Tracking[1]Tracking[1]
Tracking[1]
mervebayrak
 
Svr Raskar
Svr RaskarSvr Raskar
Svr Raskar
Camera Culture Group, MIT Media Lab
 
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 4)
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 4)SIGGRAPH 2014 Course on Computational Cameras and Displays (part 4)
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 4)
Matthew O'Toole
 
Lecture Summary : Camera Projection
Lecture Summary : Camera Projection Lecture Summary : Camera Projection
Lecture Summary : Camera Projection
홍배 김
 
Object detection involves identifying and locating
Object detection involves identifying and locatingObject detection involves identifying and locating
Object detection involves identifying and locating
mahendrarm2112
 
Motion and tracking
Motion and trackingMotion and tracking
Motion and tracking
potaters
 
Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)
Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)
Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)
Tatsunori Taniai
 
Computer Vision - Alignment and Tracking.pptx
Computer Vision - Alignment and Tracking.pptxComputer Vision - Alignment and Tracking.pptx
Computer Vision - Alignment and Tracking.pptx
othersk46
 
IGARSS presentation WKLEE.pptx
IGARSS presentation WKLEE.pptxIGARSS presentation WKLEE.pptx
IGARSS presentation WKLEE.pptx
grssieee
 
IGARSS presentation WKLEE.pptx
IGARSS presentation WKLEE.pptxIGARSS presentation WKLEE.pptx
IGARSS presentation WKLEE.pptx
grssieee
 
Visual odometry & slam utilizing indoor structured environments
Visual odometry & slam utilizing indoor structured environmentsVisual odometry & slam utilizing indoor structured environments
Visual odometry & slam utilizing indoor structured environments
NAVER Engineering
 
426 Lecture5: AR Registration
426 Lecture5: AR Registration426 Lecture5: AR Registration
426 Lecture5: AR Registration
Mark Billinghurst
 
DTAM: Dense Tracking and Mapping in Real-Time, Robot vision Group
DTAM: Dense Tracking and Mapping in Real-Time, Robot vision GroupDTAM: Dense Tracking and Mapping in Real-Time, Robot vision Group
DTAM: Dense Tracking and Mapping in Real-Time, Robot vision Group
Lihang Li
 
Optical Computing for Fast Light Transport Analysis
Optical Computing for Fast Light Transport AnalysisOptical Computing for Fast Light Transport Analysis
Optical Computing for Fast Light Transport Analysis
Matthew O'Toole
 
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
grssieee
 
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
grssieee
 
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
grssieee
 
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
A SELF-ADJUSTIVE GEOMETRIC CORRECTION METHOD FOR SERIOUSLY OBLIQUE AERO IMAGE...
grssieee
 
Stixel based real time object detection for ADAS using surface normal
Stixel based real time object detection for ADAS using surface normalStixel based real time object detection for ADAS using surface normal
Stixel based real time object detection for ADAS using surface normal
TaeKang Woo
 
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 4)
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 4)SIGGRAPH 2014 Course on Computational Cameras and Displays (part 4)
SIGGRAPH 2014 Course on Computational Cameras and Displays (part 4)
Matthew O'Toole
 
Lecture Summary : Camera Projection
Lecture Summary : Camera Projection Lecture Summary : Camera Projection
Lecture Summary : Camera Projection
홍배 김
 
Object detection involves identifying and locating
Object detection involves identifying and locatingObject detection involves identifying and locating
Object detection involves identifying and locating
mahendrarm2112
 
Motion and tracking
Motion and trackingMotion and tracking
Motion and tracking
potaters
 
Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)
Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)
Fast Multi-frame Stereo Scene Flow with Motion Segmentation (CVPR 2017)
Tatsunori Taniai
 
Computer Vision - Alignment and Tracking.pptx
Computer Vision - Alignment and Tracking.pptxComputer Vision - Alignment and Tracking.pptx
Computer Vision - Alignment and Tracking.pptx
othersk46
 
IGARSS presentation WKLEE.pptx
IGARSS presentation WKLEE.pptxIGARSS presentation WKLEE.pptx
IGARSS presentation WKLEE.pptx
grssieee
 
IGARSS presentation WKLEE.pptx
IGARSS presentation WKLEE.pptxIGARSS presentation WKLEE.pptx
IGARSS presentation WKLEE.pptx
grssieee
 

More from knowdiff (17)

Ut talk feb 2017
Ut talk   feb 2017Ut talk   feb 2017
Ut talk feb 2017
knowdiff
 
Ali khalili: Towards an Open Linked Data-based Infrastructure for Studying Sc...
Ali khalili: Towards an Open Linked Data-based Infrastructure for Studying Sc...Ali khalili: Towards an Open Linked Data-based Infrastructure for Studying Sc...
Ali khalili: Towards an Open Linked Data-based Infrastructure for Studying Sc...
knowdiff
 
Scheduling for cloud systems with multi level data locality
Scheduling for cloud systems with multi level data localityScheduling for cloud systems with multi level data locality
Scheduling for cloud systems with multi level data locality
knowdiff
 
Amin Milani Fard: Directed Model Inference for Testing and Analysis of Web Ap...
Amin Milani Fard: Directed Model Inference for Testing and Analysis of Web Ap...Amin Milani Fard: Directed Model Inference for Testing and Analysis of Web Ap...
Amin Milani Fard: Directed Model Inference for Testing and Analysis of Web Ap...
knowdiff
 
Knowledge based economy and power of crowd sourcing
Knowledge based economy and power of crowd sourcing Knowledge based economy and power of crowd sourcing
Knowledge based economy and power of crowd sourcing
knowdiff
 
Amin tayyebi: Big Data and Land Use Change Science
Amin tayyebi: Big Data and Land Use Change ScienceAmin tayyebi: Big Data and Land Use Change Science
Amin tayyebi: Big Data and Land Use Change Science
knowdiff
 
Mehdi Rezagholizadeh: Image Sensor Modeling: Color Measurement at Low Light L...
Mehdi Rezagholizadeh: Image Sensor Modeling: Color Measurement at Low Light L...Mehdi Rezagholizadeh: Image Sensor Modeling: Color Measurement at Low Light L...
Mehdi Rezagholizadeh: Image Sensor Modeling: Color Measurement at Low Light L...
knowdiff
 
Sara Afshar: Scheduling and Resource Sharing in Multiprocessor Real-Time Systems
Sara Afshar: Scheduling and Resource Sharing in Multiprocessor Real-Time SystemsSara Afshar: Scheduling and Resource Sharing in Multiprocessor Real-Time Systems
Sara Afshar: Scheduling and Resource Sharing in Multiprocessor Real-Time Systems
knowdiff
 
Seyed Mehdi mohaghegh: Modelling material use within the low carbon energy pa...
Seyed Mehdi mohaghegh: Modelling material use within the low carbon energy pa...Seyed Mehdi mohaghegh: Modelling material use within the low carbon energy pa...
Seyed Mehdi mohaghegh: Modelling material use within the low carbon energy pa...
knowdiff
 
Narjess Afzaly: Model Your Problem with Graphs and Generate your objects
Narjess Afzaly: Model Your Problem with Graphs and Generate your objectsNarjess Afzaly: Model Your Problem with Graphs and Generate your objects
Narjess Afzaly: Model Your Problem with Graphs and Generate your objects
knowdiff
 
Computational methods applications in air pollution modeling (Dr. Yadghar)
Computational methods applications in air pollution modeling (Dr. Yadghar)Computational methods applications in air pollution modeling (Dr. Yadghar)
Computational methods applications in air pollution modeling (Dr. Yadghar)
knowdiff
 
Somaz Kolahi : Functional Dependencies: Redundancy Analysis and Correcting Vi...
Somaz Kolahi : Functional Dependencies: Redundancy Analysis and Correcting Vi...Somaz Kolahi : Functional Dependencies: Redundancy Analysis and Correcting Vi...
Somaz Kolahi : Functional Dependencies: Redundancy Analysis and Correcting Vi...
knowdiff
 
Knowdiff visiting lecturer 140 (Azad Shademan): Uncalibrated Image-Based Robo...
Knowdiff visiting lecturer 140 (Azad Shademan): Uncalibrated Image-Based Robo...Knowdiff visiting lecturer 140 (Azad Shademan): Uncalibrated Image-Based Robo...
Knowdiff visiting lecturer 140 (Azad Shademan): Uncalibrated Image-Based Robo...
knowdiff
 
Mehran Shaghaghi: Quantum Mechanics Dilemmas
Mehran Shaghaghi: Quantum Mechanics DilemmasMehran Shaghaghi: Quantum Mechanics Dilemmas
Mehran Shaghaghi: Quantum Mechanics Dilemmas
knowdiff
 
Hossein Taghavi : Codes on Graphs
Hossein Taghavi : Codes on GraphsHossein Taghavi : Codes on Graphs
Hossein Taghavi : Codes on Graphs
knowdiff
 
Dr. Amir Nejat
Dr. Amir NejatDr. Amir Nejat
Dr. Amir Nejat
knowdiff
 
Alborz
AlborzAlborz
Alborz
knowdiff
 
Ut talk feb 2017
Ut talk   feb 2017Ut talk   feb 2017
Ut talk feb 2017
knowdiff
 
Ali khalili: Towards an Open Linked Data-based Infrastructure for Studying Sc...
Ali khalili: Towards an Open Linked Data-based Infrastructure for Studying Sc...Ali khalili: Towards an Open Linked Data-based Infrastructure for Studying Sc...
Ali khalili: Towards an Open Linked Data-based Infrastructure for Studying Sc...
knowdiff
 
Scheduling for cloud systems with multi level data locality
Scheduling for cloud systems with multi level data localityScheduling for cloud systems with multi level data locality
Scheduling for cloud systems with multi level data locality
knowdiff
 
Amin Milani Fard: Directed Model Inference for Testing and Analysis of Web Ap...
Amin Milani Fard: Directed Model Inference for Testing and Analysis of Web Ap...Amin Milani Fard: Directed Model Inference for Testing and Analysis of Web Ap...
Amin Milani Fard: Directed Model Inference for Testing and Analysis of Web Ap...
knowdiff
 
Knowledge based economy and power of crowd sourcing
Knowledge based economy and power of crowd sourcing Knowledge based economy and power of crowd sourcing
Knowledge based economy and power of crowd sourcing
knowdiff
 
Amin tayyebi: Big Data and Land Use Change Science
Amin tayyebi: Big Data and Land Use Change ScienceAmin tayyebi: Big Data and Land Use Change Science
Amin tayyebi: Big Data and Land Use Change Science
knowdiff
 
Mehdi Rezagholizadeh: Image Sensor Modeling: Color Measurement at Low Light L...
Mehdi Rezagholizadeh: Image Sensor Modeling: Color Measurement at Low Light L...Mehdi Rezagholizadeh: Image Sensor Modeling: Color Measurement at Low Light L...
Mehdi Rezagholizadeh: Image Sensor Modeling: Color Measurement at Low Light L...
knowdiff
 
Sara Afshar: Scheduling and Resource Sharing in Multiprocessor Real-Time Systems
Sara Afshar: Scheduling and Resource Sharing in Multiprocessor Real-Time SystemsSara Afshar: Scheduling and Resource Sharing in Multiprocessor Real-Time Systems
Sara Afshar: Scheduling and Resource Sharing in Multiprocessor Real-Time Systems
knowdiff
 
Seyed Mehdi mohaghegh: Modelling material use within the low carbon energy pa...
Seyed Mehdi mohaghegh: Modelling material use within the low carbon energy pa...Seyed Mehdi mohaghegh: Modelling material use within the low carbon energy pa...
Seyed Mehdi mohaghegh: Modelling material use within the low carbon energy pa...
knowdiff
 
Narjess Afzaly: Model Your Problem with Graphs and Generate your objects
Narjess Afzaly: Model Your Problem with Graphs and Generate your objectsNarjess Afzaly: Model Your Problem with Graphs and Generate your objects
Narjess Afzaly: Model Your Problem with Graphs and Generate your objects
knowdiff
 
Computational methods applications in air pollution modeling (Dr. Yadghar)
Computational methods applications in air pollution modeling (Dr. Yadghar)Computational methods applications in air pollution modeling (Dr. Yadghar)
Computational methods applications in air pollution modeling (Dr. Yadghar)
knowdiff
 
Somaz Kolahi : Functional Dependencies: Redundancy Analysis and Correcting Vi...
Somaz Kolahi : Functional Dependencies: Redundancy Analysis and Correcting Vi...Somaz Kolahi : Functional Dependencies: Redundancy Analysis and Correcting Vi...
Somaz Kolahi : Functional Dependencies: Redundancy Analysis and Correcting Vi...
knowdiff
 
Knowdiff visiting lecturer 140 (Azad Shademan): Uncalibrated Image-Based Robo...
Knowdiff visiting lecturer 140 (Azad Shademan): Uncalibrated Image-Based Robo...Knowdiff visiting lecturer 140 (Azad Shademan): Uncalibrated Image-Based Robo...
Knowdiff visiting lecturer 140 (Azad Shademan): Uncalibrated Image-Based Robo...
knowdiff
 
Mehran Shaghaghi: Quantum Mechanics Dilemmas
Mehran Shaghaghi: Quantum Mechanics DilemmasMehran Shaghaghi: Quantum Mechanics Dilemmas
Mehran Shaghaghi: Quantum Mechanics Dilemmas
knowdiff
 
Hossein Taghavi : Codes on Graphs
Hossein Taghavi : Codes on GraphsHossein Taghavi : Codes on Graphs
Hossein Taghavi : Codes on Graphs
knowdiff
 
Dr. Amir Nejat
Dr. Amir NejatDr. Amir Nejat
Dr. Amir Nejat
knowdiff
 
Ad

Recently uploaded (20)

Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
BookNet Canada
 
Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...
BookNet Canada
 
Foundations of Cybersecurity - Google Certificate
Foundations of Cybersecurity - Google CertificateFoundations of Cybersecurity - Google Certificate
Foundations of Cybersecurity - Google Certificate
VICTOR MAESTRE RAMIREZ
 
Connect and Protect: Networks and Network Security
Connect and Protect: Networks and Network SecurityConnect and Protect: Networks and Network Security
Connect and Protect: Networks and Network Security
VICTOR MAESTRE RAMIREZ
 
Web and Graphics Designing Training in Rajpura
Web and Graphics Designing Training in RajpuraWeb and Graphics Designing Training in Rajpura
Web and Graphics Designing Training in Rajpura
Erginous Technology
 
The Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdfThe Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdf
Precisely
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and MLGyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
Gyrus AI
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
AI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdfAI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdf
Precisely
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptxReimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
Reimagine How You and Your Team Work with Microsoft 365 Copilot.pptx
John Moore
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...Canadian book publishing: Insights from the latest salary survey - Tech Forum...
Canadian book publishing: Insights from the latest salary survey - Tech Forum...
BookNet Canada
 
Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...Transcript: Canadian book publishing: Insights from the latest salary survey ...
Transcript: Canadian book publishing: Insights from the latest salary survey ...
BookNet Canada
 
Foundations of Cybersecurity - Google Certificate
Foundations of Cybersecurity - Google CertificateFoundations of Cybersecurity - Google Certificate
Foundations of Cybersecurity - Google Certificate
VICTOR MAESTRE RAMIREZ
 
Connect and Protect: Networks and Network Security
Connect and Protect: Networks and Network SecurityConnect and Protect: Networks and Network Security
Connect and Protect: Networks and Network Security
VICTOR MAESTRE RAMIREZ
 
Web and Graphics Designing Training in Rajpura
Web and Graphics Designing Training in RajpuraWeb and Graphics Designing Training in Rajpura
Web and Graphics Designing Training in Rajpura
Erginous Technology
 
The Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdfThe Changing Compliance Landscape in 2025.pdf
The Changing Compliance Landscape in 2025.pdf
Precisely
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Challenges in Migrating Imperative Deep Learning Programs to Graph Execution:...
Raffi Khatchadourian
 
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and MLGyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
GyrusAI - Broadcasting & Streaming Applications Driven by AI and ML
Gyrus AI
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
AI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdfAI You Can Trust: The Critical Role of Governance and Quality.pdf
AI You Can Trust: The Critical Role of Governance and Quality.pdf
Precisely
 
Q1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor PresentationQ1 2025 Dropbox Earnings and Investor Presentation
Q1 2025 Dropbox Earnings and Investor Presentation
Dropbox
 
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025Zilliz Cloud Monthly Technical Review: May 2025
Zilliz Cloud Monthly Technical Review: May 2025
Zilliz
 
Ad

Uncalibrated Image-Based Robotic Visual Servoing (knowdiff.net)

  • 1. Uncalibrated Image-based Control of Robots Azad Shademan PhD Candidate Computing Science, University of Alberta Edmonton, Alberta, CANADA [email_address]
  • 2. Vision-Based Control A A A B B B current desired Left Image Right Image
  • 3. Vision-Based Control Left Image Right Image B B B
  • 4. Where is the camera located? Eye-to-Hand e.g.,hand/eye coordination Eye-in-Hand
  • 5. Vision-Based Control Feedback from visual sensor (camera) to control a robot Also called visual servoing Visual servoing is the task of minimizing a visually specified objective by giving appropriate control commands to a robot Is it any difficult ? Images are 2D, the robot workspace is 3D 2D data  3D geometry
  • 6. Visual Servo Control law Position-Based: Robust and real-time pose estimation + robot’s world-space (Cartesian) controller Image-Based: Desired image features seen from camera Control law entirely based on image features Hybrid: Depth information is added to image data to increase stability
  • 7. Position-Based Robust and real-time relative pose estimation E xtended K alman F ilter to solve the nonlinear relative pose equations. Cons: EKF is not the optimal estimator. Performance and the convergence of pose estimates are highly sensitive to EKF parameters.
  • 9. Position-Based Measurement noise State variable Process noise yaw pitch roll Measurement equation (projection) is nonlinear and must be linearized.
  • 10. K x k-1,k-1 z k R k P k,k P k,k-1 C k Q k-1 x k,k x k,k-1 P k-1,k-1 Kalman Gain Measurement noise covariance A priori error cov. @ k-1 Process noise covariance Initial/previous state Linearization Measurement State update State prediction Error cov. prediction Error cov. update
  • 11. Image-Based Desired Image feature Extracted image feature
  • 12. Visual-motor Equation x 1 x 2 x 3 x 4 q=[q 1 … q 6 ] Visual-Motor Equation This Jacobian is important for motion control.
  • 13. Visual-motor Jacobian Image space velocity Joint space velocity A A B B
  • 14. Image-Based Control Law Measure the error in image space Calculate/Estimate the inverse Jacobian Update new joint values
  • 15. Image-Based Control Law Desired Image feature Extracted image feature
  • 16. Jacobian calculation Analytic form available if model is known. Known model  Calibrated Must be estimated if model is not known Unknown model  Uncalibrated
  • 17. Calibrated: Interaction Matrix Analytic form depends on depth estimates. Camera/Robot transform required. No flexibility. Camera Velocity
  • 18. Uncalibrated: Visual-Motor Jacobian A naïve method: Orthogonal projections
  • 19. Uncalibrated: Visual-Motor Jacobian A naïve method: Orthogonal projections
  • 20. Uncalibrated: Visual-Motor Jacobian A naïve method: Orthogonal projections …
  • 21. Uncalibrated: Visual-Motor Jacobian A popular local estimator: Recursive secant method (Broyden update):
  • 22. Relaxed model assumptions Traditionally: Local methods No global planning (-) Difficult to show asymptotic stability condition is ensured (-) Main problem of traditional methods is the locality. Calibrated vs. Uncalibrated Model derived analytically Global asymptotic stability (+) Optimal planning is possible (+) A lot of prior knowledge on the model (-) Global Model Estimation ( Research result ) Optimal trajectory planning (+) Global stability guarantee (+)
  • 23. Synopsis of Global Visual Servoing Model Estimation (Uncalibrated) Visual-Motor Kinematics Model Global Model Extending Linear Estimation (Visual-Motor Jacobian) to Nonlinear Estimation Our contributions: K-NN Regression-Based Estimation Locally Least Squares Estimation
  • 24. Local vs. Global Key idea: using only the previous estimation to estimate the Jacobian RLS with forgetting factor Hosoda and Asada ’94 1 st Rank Broyden update: Jägersand et al. ’97 Exploratory motion: Sutanto et al. ‘98 Quasi-Newton Jacobian estimation of moving object: Piepmeier et al. ‘04 Key idea: using all of the interaction history to estimate the Jacobian Globally-Stable controller design Optimal path planning Local methods don’t!
  • 25. K-NN Regression-based Method q 1 q 2 3 NN q 1 q 2 x 1 ?
  • 26. (X,q) L ocally L east S quares Method q 1 q 2 x 1 ? K-neighbour(q)
  • 27. Eye-to-hand Experiments Puma 560 Stereo vision Features: projection of the end-effector’s position on image planes (4-dim) 3 DOF for control
  • 30. Visual Task Specification Image Features: Geometric primitives (points, lines, etc.) Higher order image moments Shape parameters … Visual Tasks Point-to-point (point alignment) Point-to-line (colinearity) Point-to-plane (coplanarity) …
  • 38.  
  • 39. Conclusions Reviewed position-based and image-based visual servoing schemes. Presented two global methods to learn the visual-motor function. KNN suffers from the bias in local estimations. LLS (global) works better than the KNN (global) and local updates. The Jacobian of more complex visual tasks can also be learned using LLS method. [email_address]