SlideShare a Scribd company logo
WEBINAR
Understanding Akka Streams, Back Pressure
and Asynchronous Architectures
by Konrad Malawski (@ktosopl)
Konrad `ktoso` Malawski
Akka Team,
Reactive Streams TCK,
Persistence, HTTP
Konrad `@ktosopl` Malawski
akka.io
typesafe.com
geecon.org
Java.pl / KrakowScala.pl
sckrk.com
GDGKrakow.pl
lambdakrk.pl
Understanding Akka Streams, Back Pressure, and Asynchronous Architectures
“Stream”
“Stream”
What does it mean?!
Akka Streams
Akka Streams && Reactive Streams
Why back-pressure?
?
Why back-pressure?
So you’ve built your app and it’s awesome.
Why back-pressure?
Let’s not smash it horribly under load.
What is back-pressure?
?
What is back-pressure?
No no no…!
Not THAT Back-pressure!
No no no…!
Not THAT Back-pressure!
What is back-pressure?
Publisher[T] Subscriber[T]
Back-pressure explained
Fast Publisher Slow Subscriber
Push model
Subscriber usually has some kind of buffer.
Push model
Push model
Push model
What if the buffer overflows?
Push model
Use bounded buffer,
drop messages + require re-sending
Push model
Kernel does this!
Routers do this!
(TCP)
Use bounded buffer,
drop messages + require re-sending
Push model
Increase buffer size…
Well, while you have memory available!
Push model
Push model
D
EM
O
Reactive Streams explained
Reactive Streams
explained in 1 slide
Fast Publisher will send at-most 3 elements.
This is pull-based-backpressure.
Reactive Streams: “dynamic push/pull”
JEP-266 – soon…!
public final class Flow {
private Flow() {} // uninstantiable
@FunctionalInterface
public static interface Publisher<T> {
public void subscribe(Subscriber<? super T> subscriber);
}
public static interface Subscriber<T> {
public void onSubscribe(Subscription subscription);
public void onNext(T item);
public void onError(Throwable throwable);
public void onComplete();
}
public static interface Subscription {
public void request(long n);
public void cancel();
}
public static interface Processor<T,R> extends Subscriber<T>, Publisher<R> {
}
}
Reactive Streams: goals
1) Avoiding unbounded buffering across async boundaries
2)Inter-op interfaces between various libraries
Reactive Streams: goals
1) Avoiding unbounded buffering across async boundaries
2)Inter-op interfaces between various libraries
Argh, implementing a correct RS Publisher
or Subscriber is so hard!
Reactive Streams: goals
1) Avoiding unbounded buffering across async boundaries
2)Inter-op interfaces between various libraries
Argh, implementing a correct
RS Publisher or Subscriber is so hard!
Reactive Streams: goals
1) Avoiding unbounded buffering across async boundaries
2)Inter-op interfaces between various libraries
Argh, implementing a correct
RS Publisher or Subscriber is so hard!
You should be using
Akka Streams abstractions instead!
Akka Streams
Streams complement Actors,
they do not replace them.
Actors – distribution (location transparency)
Streams – back-pressured + more rigid-blueprint
Akka is a Toolkit, pick the right tools for the job.
Runar’s excellent talk @ Scala.World 2015
Asynchronous processing toolbox:
Power
Constraints
Akka is a Toolkit, pick the right tools for the job.
Asynchronous processing toolbox:
Constraints
Power
Akka is a Toolkit, pick the right tools for the job.
Single value, no streaming by definition.
Local abstraction.

Execution contexts.
Power
Constraints
Akka is a Toolkit, pick the right tools for the job.
Mostly static processing layouts.
Well typed and Back-pressured!
Constraints
Power
Akka is a Toolkit, pick the right tools for the job.
Plain Actor’s younger brother, experimental.
Location transparent, well typed.
Technically unconstrained in actions performed
Constraints
Power
Akka is a Toolkit, pick the right tools for the job.
Runar’s excellent talk @ Scala.World 2015
Location transparent.
Various resilience mechanisms.
(watching, persistent recovering, migration, pools)
Untyped and unconstrained in actions performed.
Constraints
Power
Akka Streams
streams
Akka Streams in 20 seconds:
// types:
Source[Out, Mat]
Flow[In, Out, Mat]
Sink[In, Mat]
// generally speaking, it's always:
val ready = Source(???).via(flow).map(_ * 2).to(sink)
val mat: Mat = ready.run()
// the usual example:
val f: Future[String] =
Source.single(1).map(_.toString).runWith(Sink.head)
Proper static typing!
Akka Streams in 20 seconds:
// types: _
Source[Int, Unit]
Flow[Int, String, Unit]
Sink[String, Future[String]]
Source.single(1).map(_.toString).runWith(Sink.head)
Akka Streams in 20 seconds:
// types: _
Source[Int, Unit]
Flow[Int, String, Unit]
Sink[String, Future[String]]
Source.single(1).map(_.toString).runWith(Sink.head)
Materialization
Gears from GeeCON.org, did I mention it’s an awesome conf?
What is “materialization” really?
What is “materialization” really?
What is “materialization” really?
What is “materialization” really?
Akka Streams & HTTP
streams
& HTTP
Akka HTTP
Joint effort of Spray and Akka teams.
Complete HTTP Server/Client implementation.
Learns from Spray’s 3-4 years history.
Since the beginning with
streaming as first class citizen.
Side note:
Lagom also utilises Akka Streams for streaming.
Streaming in Akka HTTP
DEMO
http://doc.akka.io/docs/akka/2.4.7/scala/stream/stream-customize.html#graphstage-scala
“Framed entity streaming” https://github.com/akka/akka/pull/20778
HttpServer as a:
Flow[HttpRequest, HttpResponse]
Streaming in Akka HTTP
DEMO
http://doc.akka.io/docs/akka/2.4.7/scala/stream/stream-customize.html#graphstage-scala
“Framed entity streaming” https://github.com/akka/akka/pull/20778
HttpServer as a:
Flow[HttpRequest, HttpResponse]
HTTP Entity as a:
Source[ByteString, _]
Streaming in Akka HTTP
DEMO
http://doc.akka.io/docs/akka/2.4.7/scala/stream/stream-customize.html#graphstage-scala
“Framed entity streaming” https://github.com/akka/akka/pull/20778
HttpServer as a:
Flow[HttpRequest, HttpResponse]
HTTP Entity as a:
Source[ByteString, _]
Websocket connection as a:
Flow[ws.Message, ws.Message]
Persistence Query (experimental)
“The Query Side”
of Akka Persistence
Persistence Query (experimental)
Persistence Query Journals
akka/akka-persistence-cassandra 0.16
akka/akka @ leveldb-journal 2.4.8
dnvriend/akka-persistence-jdbc 2.3.3
scullxbones/akka-persistence-mongo 1.2.5
…and more, that I likely forgot about.
Implementation of “data-pump” pattern.
Akka + Kafka = BFF
Reactive Kafka
+
Started by Krzysiek Ciesielski & Adam Warski @ SofwareMill.com
“ACKnowladged streams”
happy ACKing!
Kafka + Akka = BFF
Akka is Arbitrary processing.
Kafka is somewhat more than a message queue,
but very focused on “the log”.
Spark shines with it’s data-science focus.
Kafka + Akka = BFF
Kafka + Akka = BFF
Streams talking to Actors
&&
Actors talking to Streams
Streams <=> Actors inter-op
Source.actorRef (no back-pressure)
Source.queue (safe)
Sink.actorRef (no back-pressure)
Sink.actorRefWithAck (safe)
Exciting times ahead!
Next steps for Akka
Completely new Akka Remoting (goal: 1M+ msg/s (!)),
(it is built using Akka Streams).
More integrations for Akka Streams stages,
also dynamic fan-in/out A.K.A.“the Hub”.
Reactive Kafka polishing and stable release with SoftwareMill.
“Confirmed Streams” work from Reactive Kafka generalised.
Akka Typed likely to progress again.
Of course, continued maintenance of Cluster and others.
Upgrade your grey matter

Two free O’Reilly eBooks by Lightbend
DOWNLOAD	NOWDOWNLOAD	NOW
lightbend.com/pov
Reactive Roundtable

World Tour by Lightbend
lightbend.com/reactive-roundtable
Proof of Value Service

Accelerate Project Success
Q/A
ktoso @ lightbend.com
twitter: ktosopl
github: ktoso
team blog: letitcrash.com
home: akka.io
Ad

More Related Content

What's hot (20)

Facebook Messages & HBase
Facebook Messages & HBaseFacebook Messages & HBase
Facebook Messages & HBase
强 王
 
Spring Boot+Kafka: the New Enterprise Platform
Spring Boot+Kafka: the New Enterprise PlatformSpring Boot+Kafka: the New Enterprise Platform
Spring Boot+Kafka: the New Enterprise Platform
VMware Tanzu
 
Apache Kafka - Martin Podval
Apache Kafka - Martin PodvalApache Kafka - Martin Podval
Apache Kafka - Martin Podval
Martin Podval
 
Declarative Concurrency with Reactive Programming
Declarative Concurrency with Reactive ProgrammingDeclarative Concurrency with Reactive Programming
Declarative Concurrency with Reactive Programming
Florian Stefan
 
Easy, scalable, fault tolerant stream processing with structured streaming - ...
Easy, scalable, fault tolerant stream processing with structured streaming - ...Easy, scalable, fault tolerant stream processing with structured streaming - ...
Easy, scalable, fault tolerant stream processing with structured streaming - ...
Databricks
 
Understanding Reactive Programming
Understanding Reactive ProgrammingUnderstanding Reactive Programming
Understanding Reactive Programming
Andres Almiray
 
Apache Beam (incubating)
Apache Beam (incubating)Apache Beam (incubating)
Apache Beam (incubating)
Apache Apex
 
Building Robust ETL Pipelines with Apache Spark
Building Robust ETL Pipelines with Apache SparkBuilding Robust ETL Pipelines with Apache Spark
Building Robust ETL Pipelines with Apache Spark
Databricks
 
Angular Introduction By Surekha Gadkari
Angular Introduction By Surekha GadkariAngular Introduction By Surekha Gadkari
Angular Introduction By Surekha Gadkari
Surekha Gadkari
 
Kafka Streams vs. KSQL for Stream Processing on top of Apache Kafka
Kafka Streams vs. KSQL for Stream Processing on top of Apache KafkaKafka Streams vs. KSQL for Stream Processing on top of Apache Kafka
Kafka Streams vs. KSQL for Stream Processing on top of Apache Kafka
Kai Wähner
 
Improving Performance of Micro-Frontend Applications through Error Monitoring
Improving Performance of Micro-Frontend Applications through Error MonitoringImproving Performance of Micro-Frontend Applications through Error Monitoring
Improving Performance of Micro-Frontend Applications through Error Monitoring
ScyllaDB
 
Exploring KSQL Patterns
Exploring KSQL PatternsExploring KSQL Patterns
Exploring KSQL Patterns
confluent
 
Nginx Reverse Proxy with Kafka.pptx
Nginx Reverse Proxy with Kafka.pptxNginx Reverse Proxy with Kafka.pptx
Nginx Reverse Proxy with Kafka.pptx
wonyong hwang
 
A Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and HudiA Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and Hudi
Databricks
 
Akka Streams - From Zero to Kafka
Akka Streams - From Zero to KafkaAkka Streams - From Zero to Kafka
Akka Streams - From Zero to Kafka
Mark Harrison
 
Introduction to KSQL: Streaming SQL for Apache Kafka®
Introduction to KSQL: Streaming SQL for Apache Kafka®Introduction to KSQL: Streaming SQL for Apache Kafka®
Introduction to KSQL: Streaming SQL for Apache Kafka®
confluent
 
ksqlDB: A Stream-Relational Database System
ksqlDB: A Stream-Relational Database SystemksqlDB: A Stream-Relational Database System
ksqlDB: A Stream-Relational Database System
confluent
 
Intro to HBase Internals & Schema Design (for HBase users)
Intro to HBase Internals & Schema Design (for HBase users)Intro to HBase Internals & Schema Design (for HBase users)
Intro to HBase Internals & Schema Design (for HBase users)
alexbaranau
 
Analyzing Petabyte Scale Financial Data with Apache Pinot and Apache Kafka | ...
Analyzing Petabyte Scale Financial Data with Apache Pinot and Apache Kafka | ...Analyzing Petabyte Scale Financial Data with Apache Pinot and Apache Kafka | ...
Analyzing Petabyte Scale Financial Data with Apache Pinot and Apache Kafka | ...
HostedbyConfluent
 
Simplifying Distributed Transactions with Sagas in Kafka (Stephen Zoio, Simpl...
Simplifying Distributed Transactions with Sagas in Kafka (Stephen Zoio, Simpl...Simplifying Distributed Transactions with Sagas in Kafka (Stephen Zoio, Simpl...
Simplifying Distributed Transactions with Sagas in Kafka (Stephen Zoio, Simpl...
confluent
 
Facebook Messages & HBase
Facebook Messages & HBaseFacebook Messages & HBase
Facebook Messages & HBase
强 王
 
Spring Boot+Kafka: the New Enterprise Platform
Spring Boot+Kafka: the New Enterprise PlatformSpring Boot+Kafka: the New Enterprise Platform
Spring Boot+Kafka: the New Enterprise Platform
VMware Tanzu
 
Apache Kafka - Martin Podval
Apache Kafka - Martin PodvalApache Kafka - Martin Podval
Apache Kafka - Martin Podval
Martin Podval
 
Declarative Concurrency with Reactive Programming
Declarative Concurrency with Reactive ProgrammingDeclarative Concurrency with Reactive Programming
Declarative Concurrency with Reactive Programming
Florian Stefan
 
Easy, scalable, fault tolerant stream processing with structured streaming - ...
Easy, scalable, fault tolerant stream processing with structured streaming - ...Easy, scalable, fault tolerant stream processing with structured streaming - ...
Easy, scalable, fault tolerant stream processing with structured streaming - ...
Databricks
 
Understanding Reactive Programming
Understanding Reactive ProgrammingUnderstanding Reactive Programming
Understanding Reactive Programming
Andres Almiray
 
Apache Beam (incubating)
Apache Beam (incubating)Apache Beam (incubating)
Apache Beam (incubating)
Apache Apex
 
Building Robust ETL Pipelines with Apache Spark
Building Robust ETL Pipelines with Apache SparkBuilding Robust ETL Pipelines with Apache Spark
Building Robust ETL Pipelines with Apache Spark
Databricks
 
Angular Introduction By Surekha Gadkari
Angular Introduction By Surekha GadkariAngular Introduction By Surekha Gadkari
Angular Introduction By Surekha Gadkari
Surekha Gadkari
 
Kafka Streams vs. KSQL for Stream Processing on top of Apache Kafka
Kafka Streams vs. KSQL for Stream Processing on top of Apache KafkaKafka Streams vs. KSQL for Stream Processing on top of Apache Kafka
Kafka Streams vs. KSQL for Stream Processing on top of Apache Kafka
Kai Wähner
 
Improving Performance of Micro-Frontend Applications through Error Monitoring
Improving Performance of Micro-Frontend Applications through Error MonitoringImproving Performance of Micro-Frontend Applications through Error Monitoring
Improving Performance of Micro-Frontend Applications through Error Monitoring
ScyllaDB
 
Exploring KSQL Patterns
Exploring KSQL PatternsExploring KSQL Patterns
Exploring KSQL Patterns
confluent
 
Nginx Reverse Proxy with Kafka.pptx
Nginx Reverse Proxy with Kafka.pptxNginx Reverse Proxy with Kafka.pptx
Nginx Reverse Proxy with Kafka.pptx
wonyong hwang
 
A Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and HudiA Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and Hudi
Databricks
 
Akka Streams - From Zero to Kafka
Akka Streams - From Zero to KafkaAkka Streams - From Zero to Kafka
Akka Streams - From Zero to Kafka
Mark Harrison
 
Introduction to KSQL: Streaming SQL for Apache Kafka®
Introduction to KSQL: Streaming SQL for Apache Kafka®Introduction to KSQL: Streaming SQL for Apache Kafka®
Introduction to KSQL: Streaming SQL for Apache Kafka®
confluent
 
ksqlDB: A Stream-Relational Database System
ksqlDB: A Stream-Relational Database SystemksqlDB: A Stream-Relational Database System
ksqlDB: A Stream-Relational Database System
confluent
 
Intro to HBase Internals & Schema Design (for HBase users)
Intro to HBase Internals & Schema Design (for HBase users)Intro to HBase Internals & Schema Design (for HBase users)
Intro to HBase Internals & Schema Design (for HBase users)
alexbaranau
 
Analyzing Petabyte Scale Financial Data with Apache Pinot and Apache Kafka | ...
Analyzing Petabyte Scale Financial Data with Apache Pinot and Apache Kafka | ...Analyzing Petabyte Scale Financial Data with Apache Pinot and Apache Kafka | ...
Analyzing Petabyte Scale Financial Data with Apache Pinot and Apache Kafka | ...
HostedbyConfluent
 
Simplifying Distributed Transactions with Sagas in Kafka (Stephen Zoio, Simpl...
Simplifying Distributed Transactions with Sagas in Kafka (Stephen Zoio, Simpl...Simplifying Distributed Transactions with Sagas in Kafka (Stephen Zoio, Simpl...
Simplifying Distributed Transactions with Sagas in Kafka (Stephen Zoio, Simpl...
confluent
 

Similar to Understanding Akka Streams, Back Pressure, and Asynchronous Architectures (20)

Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...
Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...
Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...
Lightbend
 
Reactive Stream Processing with Akka Streams
Reactive Stream Processing with Akka StreamsReactive Stream Processing with Akka Streams
Reactive Stream Processing with Akka Streams
Konrad Malawski
 
Scala usergroup stockholm - reactive integrations with akka streams
Scala usergroup stockholm - reactive integrations with akka streamsScala usergroup stockholm - reactive integrations with akka streams
Scala usergroup stockholm - reactive integrations with akka streams
Johan Andrén
 
Exploring Reactive Integrations With Akka Streams, Alpakka And Apache Kafka
Exploring Reactive Integrations With Akka Streams, Alpakka And Apache KafkaExploring Reactive Integrations With Akka Streams, Alpakka And Apache Kafka
Exploring Reactive Integrations With Akka Streams, Alpakka And Apache Kafka
Lightbend
 
Reactive Streams 1.0 and Akka Streams
Reactive Streams 1.0 and Akka StreamsReactive Streams 1.0 and Akka Streams
Reactive Streams 1.0 and Akka Streams
Dean Wampler
 
Reactive integrations with Akka Streams
Reactive integrations with Akka StreamsReactive integrations with Akka Streams
Reactive integrations with Akka Streams
Konrad Malawski
 
[Tokyo Scala User Group] Akka Streams & Reactive Streams (0.7)
[Tokyo Scala User Group] Akka Streams & Reactive Streams (0.7)[Tokyo Scala User Group] Akka Streams & Reactive Streams (0.7)
[Tokyo Scala User Group] Akka Streams & Reactive Streams (0.7)
Konrad Malawski
 
Alpakka - Connecting Kafka and ElasticSearch to Akka Streams
Alpakka - Connecting Kafka and ElasticSearch to Akka StreamsAlpakka - Connecting Kafka and ElasticSearch to Akka Streams
Alpakka - Connecting Kafka and ElasticSearch to Akka Streams
Knoldus Inc.
 
2014 akka-streams-tokyo-japanese
2014 akka-streams-tokyo-japanese2014 akka-streams-tokyo-japanese
2014 akka-streams-tokyo-japanese
Konrad Malawski
 
End to End Akka Streams / Reactive Streams - from Business to Socket
End to End Akka Streams / Reactive Streams - from Business to SocketEnd to End Akka Streams / Reactive Streams - from Business to Socket
End to End Akka Streams / Reactive Streams - from Business to Socket
Konrad Malawski
 
Not Only Streams for Akademia JLabs
Not Only Streams for Akademia JLabsNot Only Streams for Akademia JLabs
Not Only Streams for Akademia JLabs
Konrad Malawski
 
Akka Streams in Action @ ScalaDays Berlin 2016
Akka Streams in Action @ ScalaDays Berlin 2016Akka Streams in Action @ ScalaDays Berlin 2016
Akka Streams in Action @ ScalaDays Berlin 2016
Konrad Malawski
 
Reactive Streams / Akka Streams - GeeCON Prague 2014
Reactive Streams / Akka Streams - GeeCON Prague 2014Reactive Streams / Akka Streams - GeeCON Prague 2014
Reactive Streams / Akka Streams - GeeCON Prague 2014
Konrad Malawski
 
Introduction to Akka Streams [Part-I]
Introduction to Akka Streams [Part-I]Introduction to Akka Streams [Part-I]
Introduction to Akka Streams [Part-I]
Knoldus Inc.
 
Akka streams
Akka streamsAkka streams
Akka streams
mircodotta
 
Spark streaming + kafka 0.10
Spark streaming + kafka 0.10Spark streaming + kafka 0.10
Spark streaming + kafka 0.10
Joan Viladrosa Riera
 
Scala + Akka + ning/async-http-client - Vancouver Scala meetup February 2015
Scala + Akka + ning/async-http-client - Vancouver Scala meetup February 2015Scala + Akka + ning/async-http-client - Vancouver Scala meetup February 2015
Scala + Akka + ning/async-http-client - Vancouver Scala meetup February 2015
Yanik Berube
 
Akka Streams
Akka StreamsAkka Streams
Akka Streams
Diego Pacheco
 
Building a Reactive System with Akka - Workshop @ O'Reilly SAConf NYC
Building a Reactive System with Akka - Workshop @ O'Reilly SAConf NYCBuilding a Reactive System with Akka - Workshop @ O'Reilly SAConf NYC
Building a Reactive System with Akka - Workshop @ O'Reilly SAConf NYC
Konrad Malawski
 
Lessons Learned From PayPal: Implementing Back-Pressure With Akka Streams And...
Lessons Learned From PayPal: Implementing Back-Pressure With Akka Streams And...Lessons Learned From PayPal: Implementing Back-Pressure With Akka Streams And...
Lessons Learned From PayPal: Implementing Back-Pressure With Akka Streams And...
Lightbend
 
Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...
Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...
Build Real-Time Streaming ETL Pipelines With Akka Streams, Alpakka And Apache...
Lightbend
 
Reactive Stream Processing with Akka Streams
Reactive Stream Processing with Akka StreamsReactive Stream Processing with Akka Streams
Reactive Stream Processing with Akka Streams
Konrad Malawski
 
Scala usergroup stockholm - reactive integrations with akka streams
Scala usergroup stockholm - reactive integrations with akka streamsScala usergroup stockholm - reactive integrations with akka streams
Scala usergroup stockholm - reactive integrations with akka streams
Johan Andrén
 
Exploring Reactive Integrations With Akka Streams, Alpakka And Apache Kafka
Exploring Reactive Integrations With Akka Streams, Alpakka And Apache KafkaExploring Reactive Integrations With Akka Streams, Alpakka And Apache Kafka
Exploring Reactive Integrations With Akka Streams, Alpakka And Apache Kafka
Lightbend
 
Reactive Streams 1.0 and Akka Streams
Reactive Streams 1.0 and Akka StreamsReactive Streams 1.0 and Akka Streams
Reactive Streams 1.0 and Akka Streams
Dean Wampler
 
Reactive integrations with Akka Streams
Reactive integrations with Akka StreamsReactive integrations with Akka Streams
Reactive integrations with Akka Streams
Konrad Malawski
 
[Tokyo Scala User Group] Akka Streams & Reactive Streams (0.7)
[Tokyo Scala User Group] Akka Streams & Reactive Streams (0.7)[Tokyo Scala User Group] Akka Streams & Reactive Streams (0.7)
[Tokyo Scala User Group] Akka Streams & Reactive Streams (0.7)
Konrad Malawski
 
Alpakka - Connecting Kafka and ElasticSearch to Akka Streams
Alpakka - Connecting Kafka and ElasticSearch to Akka StreamsAlpakka - Connecting Kafka and ElasticSearch to Akka Streams
Alpakka - Connecting Kafka and ElasticSearch to Akka Streams
Knoldus Inc.
 
2014 akka-streams-tokyo-japanese
2014 akka-streams-tokyo-japanese2014 akka-streams-tokyo-japanese
2014 akka-streams-tokyo-japanese
Konrad Malawski
 
End to End Akka Streams / Reactive Streams - from Business to Socket
End to End Akka Streams / Reactive Streams - from Business to SocketEnd to End Akka Streams / Reactive Streams - from Business to Socket
End to End Akka Streams / Reactive Streams - from Business to Socket
Konrad Malawski
 
Not Only Streams for Akademia JLabs
Not Only Streams for Akademia JLabsNot Only Streams for Akademia JLabs
Not Only Streams for Akademia JLabs
Konrad Malawski
 
Akka Streams in Action @ ScalaDays Berlin 2016
Akka Streams in Action @ ScalaDays Berlin 2016Akka Streams in Action @ ScalaDays Berlin 2016
Akka Streams in Action @ ScalaDays Berlin 2016
Konrad Malawski
 
Reactive Streams / Akka Streams - GeeCON Prague 2014
Reactive Streams / Akka Streams - GeeCON Prague 2014Reactive Streams / Akka Streams - GeeCON Prague 2014
Reactive Streams / Akka Streams - GeeCON Prague 2014
Konrad Malawski
 
Introduction to Akka Streams [Part-I]
Introduction to Akka Streams [Part-I]Introduction to Akka Streams [Part-I]
Introduction to Akka Streams [Part-I]
Knoldus Inc.
 
Scala + Akka + ning/async-http-client - Vancouver Scala meetup February 2015
Scala + Akka + ning/async-http-client - Vancouver Scala meetup February 2015Scala + Akka + ning/async-http-client - Vancouver Scala meetup February 2015
Scala + Akka + ning/async-http-client - Vancouver Scala meetup February 2015
Yanik Berube
 
Building a Reactive System with Akka - Workshop @ O'Reilly SAConf NYC
Building a Reactive System with Akka - Workshop @ O'Reilly SAConf NYCBuilding a Reactive System with Akka - Workshop @ O'Reilly SAConf NYC
Building a Reactive System with Akka - Workshop @ O'Reilly SAConf NYC
Konrad Malawski
 
Lessons Learned From PayPal: Implementing Back-Pressure With Akka Streams And...
Lessons Learned From PayPal: Implementing Back-Pressure With Akka Streams And...Lessons Learned From PayPal: Implementing Back-Pressure With Akka Streams And...
Lessons Learned From PayPal: Implementing Back-Pressure With Akka Streams And...
Lightbend
 
Ad

More from Lightbend (20)

IoT 'Megaservices' - High Throughput Microservices with Akka
IoT 'Megaservices' - High Throughput Microservices with AkkaIoT 'Megaservices' - High Throughput Microservices with Akka
IoT 'Megaservices' - High Throughput Microservices with Akka
Lightbend
 
How Akka Cluster Works: Actors Living in a Cluster
How Akka Cluster Works: Actors Living in a ClusterHow Akka Cluster Works: Actors Living in a Cluster
How Akka Cluster Works: Actors Living in a Cluster
Lightbend
 
The Reactive Principles: Eight Tenets For Building Cloud Native Applications
The Reactive Principles: Eight Tenets For Building Cloud Native ApplicationsThe Reactive Principles: Eight Tenets For Building Cloud Native Applications
The Reactive Principles: Eight Tenets For Building Cloud Native Applications
Lightbend
 
Putting the 'I' in IoT - Building Digital Twins with Akka Microservices
Putting the 'I' in IoT - Building Digital Twins with Akka MicroservicesPutting the 'I' in IoT - Building Digital Twins with Akka Microservices
Putting the 'I' in IoT - Building Digital Twins with Akka Microservices
Lightbend
 
Akka at Enterprise Scale: Performance Tuning Distributed Applications
Akka at Enterprise Scale: Performance Tuning Distributed ApplicationsAkka at Enterprise Scale: Performance Tuning Distributed Applications
Akka at Enterprise Scale: Performance Tuning Distributed Applications
Lightbend
 
Digital Transformation with Kubernetes, Containers, and Microservices
Digital Transformation with Kubernetes, Containers, and MicroservicesDigital Transformation with Kubernetes, Containers, and Microservices
Digital Transformation with Kubernetes, Containers, and Microservices
Lightbend
 
Detecting Real-Time Financial Fraud with Cloudflow on Kubernetes
Detecting Real-Time Financial Fraud with Cloudflow on KubernetesDetecting Real-Time Financial Fraud with Cloudflow on Kubernetes
Detecting Real-Time Financial Fraud with Cloudflow on Kubernetes
Lightbend
 
Cloudstate - Towards Stateful Serverless
Cloudstate - Towards Stateful ServerlessCloudstate - Towards Stateful Serverless
Cloudstate - Towards Stateful Serverless
Lightbend
 
Digital Transformation from Monoliths to Microservices to Serverless and Beyond
Digital Transformation from Monoliths to Microservices to Serverless and BeyondDigital Transformation from Monoliths to Microservices to Serverless and Beyond
Digital Transformation from Monoliths to Microservices to Serverless and Beyond
Lightbend
 
Akka Anti-Patterns, Goodbye: Six Features of Akka 2.6
Akka Anti-Patterns, Goodbye: Six Features of Akka 2.6Akka Anti-Patterns, Goodbye: Six Features of Akka 2.6
Akka Anti-Patterns, Goodbye: Six Features of Akka 2.6
Lightbend
 
Lessons From HPE: From Batch To Streaming For 20 Billion Sensors With Lightbe...
Lessons From HPE: From Batch To Streaming For 20 Billion Sensors With Lightbe...Lessons From HPE: From Batch To Streaming For 20 Billion Sensors With Lightbe...
Lessons From HPE: From Batch To Streaming For 20 Billion Sensors With Lightbe...
Lightbend
 
How to build streaming data pipelines with Akka Streams, Flink, and Spark usi...
How to build streaming data pipelines with Akka Streams, Flink, and Spark usi...How to build streaming data pipelines with Akka Streams, Flink, and Spark usi...
How to build streaming data pipelines with Akka Streams, Flink, and Spark usi...
Lightbend
 
Microservices, Kubernetes, and Application Modernization Done Right
Microservices, Kubernetes, and Application Modernization Done RightMicroservices, Kubernetes, and Application Modernization Done Right
Microservices, Kubernetes, and Application Modernization Done Right
Lightbend
 
Full Stack Reactive In Practice
Full Stack Reactive In PracticeFull Stack Reactive In Practice
Full Stack Reactive In Practice
Lightbend
 
Akka and Kubernetes: A Symbiotic Love Story
Akka and Kubernetes: A Symbiotic Love StoryAkka and Kubernetes: A Symbiotic Love Story
Akka and Kubernetes: A Symbiotic Love Story
Lightbend
 
Scala 3 Is Coming: Martin Odersky Shares What To Know
Scala 3 Is Coming: Martin Odersky Shares What To KnowScala 3 Is Coming: Martin Odersky Shares What To Know
Scala 3 Is Coming: Martin Odersky Shares What To Know
Lightbend
 
Migrating From Java EE To Cloud-Native Reactive Systems
Migrating From Java EE To Cloud-Native Reactive SystemsMigrating From Java EE To Cloud-Native Reactive Systems
Migrating From Java EE To Cloud-Native Reactive Systems
Lightbend
 
Running Kafka On Kubernetes With Strimzi For Real-Time Streaming Applications
Running Kafka On Kubernetes With Strimzi For Real-Time Streaming ApplicationsRunning Kafka On Kubernetes With Strimzi For Real-Time Streaming Applications
Running Kafka On Kubernetes With Strimzi For Real-Time Streaming Applications
Lightbend
 
Designing Events-First Microservices For A Cloud Native World
Designing Events-First Microservices For A Cloud Native WorldDesigning Events-First Microservices For A Cloud Native World
Designing Events-First Microservices For A Cloud Native World
Lightbend
 
Scala Security: Eliminate 200+ Code-Level Threats With Fortify SCA For Scala
Scala Security: Eliminate 200+ Code-Level Threats With Fortify SCA For ScalaScala Security: Eliminate 200+ Code-Level Threats With Fortify SCA For Scala
Scala Security: Eliminate 200+ Code-Level Threats With Fortify SCA For Scala
Lightbend
 
IoT 'Megaservices' - High Throughput Microservices with Akka
IoT 'Megaservices' - High Throughput Microservices with AkkaIoT 'Megaservices' - High Throughput Microservices with Akka
IoT 'Megaservices' - High Throughput Microservices with Akka
Lightbend
 
How Akka Cluster Works: Actors Living in a Cluster
How Akka Cluster Works: Actors Living in a ClusterHow Akka Cluster Works: Actors Living in a Cluster
How Akka Cluster Works: Actors Living in a Cluster
Lightbend
 
The Reactive Principles: Eight Tenets For Building Cloud Native Applications
The Reactive Principles: Eight Tenets For Building Cloud Native ApplicationsThe Reactive Principles: Eight Tenets For Building Cloud Native Applications
The Reactive Principles: Eight Tenets For Building Cloud Native Applications
Lightbend
 
Putting the 'I' in IoT - Building Digital Twins with Akka Microservices
Putting the 'I' in IoT - Building Digital Twins with Akka MicroservicesPutting the 'I' in IoT - Building Digital Twins with Akka Microservices
Putting the 'I' in IoT - Building Digital Twins with Akka Microservices
Lightbend
 
Akka at Enterprise Scale: Performance Tuning Distributed Applications
Akka at Enterprise Scale: Performance Tuning Distributed ApplicationsAkka at Enterprise Scale: Performance Tuning Distributed Applications
Akka at Enterprise Scale: Performance Tuning Distributed Applications
Lightbend
 
Digital Transformation with Kubernetes, Containers, and Microservices
Digital Transformation with Kubernetes, Containers, and MicroservicesDigital Transformation with Kubernetes, Containers, and Microservices
Digital Transformation with Kubernetes, Containers, and Microservices
Lightbend
 
Detecting Real-Time Financial Fraud with Cloudflow on Kubernetes
Detecting Real-Time Financial Fraud with Cloudflow on KubernetesDetecting Real-Time Financial Fraud with Cloudflow on Kubernetes
Detecting Real-Time Financial Fraud with Cloudflow on Kubernetes
Lightbend
 
Cloudstate - Towards Stateful Serverless
Cloudstate - Towards Stateful ServerlessCloudstate - Towards Stateful Serverless
Cloudstate - Towards Stateful Serverless
Lightbend
 
Digital Transformation from Monoliths to Microservices to Serverless and Beyond
Digital Transformation from Monoliths to Microservices to Serverless and BeyondDigital Transformation from Monoliths to Microservices to Serverless and Beyond
Digital Transformation from Monoliths to Microservices to Serverless and Beyond
Lightbend
 
Akka Anti-Patterns, Goodbye: Six Features of Akka 2.6
Akka Anti-Patterns, Goodbye: Six Features of Akka 2.6Akka Anti-Patterns, Goodbye: Six Features of Akka 2.6
Akka Anti-Patterns, Goodbye: Six Features of Akka 2.6
Lightbend
 
Lessons From HPE: From Batch To Streaming For 20 Billion Sensors With Lightbe...
Lessons From HPE: From Batch To Streaming For 20 Billion Sensors With Lightbe...Lessons From HPE: From Batch To Streaming For 20 Billion Sensors With Lightbe...
Lessons From HPE: From Batch To Streaming For 20 Billion Sensors With Lightbe...
Lightbend
 
How to build streaming data pipelines with Akka Streams, Flink, and Spark usi...
How to build streaming data pipelines with Akka Streams, Flink, and Spark usi...How to build streaming data pipelines with Akka Streams, Flink, and Spark usi...
How to build streaming data pipelines with Akka Streams, Flink, and Spark usi...
Lightbend
 
Microservices, Kubernetes, and Application Modernization Done Right
Microservices, Kubernetes, and Application Modernization Done RightMicroservices, Kubernetes, and Application Modernization Done Right
Microservices, Kubernetes, and Application Modernization Done Right
Lightbend
 
Full Stack Reactive In Practice
Full Stack Reactive In PracticeFull Stack Reactive In Practice
Full Stack Reactive In Practice
Lightbend
 
Akka and Kubernetes: A Symbiotic Love Story
Akka and Kubernetes: A Symbiotic Love StoryAkka and Kubernetes: A Symbiotic Love Story
Akka and Kubernetes: A Symbiotic Love Story
Lightbend
 
Scala 3 Is Coming: Martin Odersky Shares What To Know
Scala 3 Is Coming: Martin Odersky Shares What To KnowScala 3 Is Coming: Martin Odersky Shares What To Know
Scala 3 Is Coming: Martin Odersky Shares What To Know
Lightbend
 
Migrating From Java EE To Cloud-Native Reactive Systems
Migrating From Java EE To Cloud-Native Reactive SystemsMigrating From Java EE To Cloud-Native Reactive Systems
Migrating From Java EE To Cloud-Native Reactive Systems
Lightbend
 
Running Kafka On Kubernetes With Strimzi For Real-Time Streaming Applications
Running Kafka On Kubernetes With Strimzi For Real-Time Streaming ApplicationsRunning Kafka On Kubernetes With Strimzi For Real-Time Streaming Applications
Running Kafka On Kubernetes With Strimzi For Real-Time Streaming Applications
Lightbend
 
Designing Events-First Microservices For A Cloud Native World
Designing Events-First Microservices For A Cloud Native WorldDesigning Events-First Microservices For A Cloud Native World
Designing Events-First Microservices For A Cloud Native World
Lightbend
 
Scala Security: Eliminate 200+ Code-Level Threats With Fortify SCA For Scala
Scala Security: Eliminate 200+ Code-Level Threats With Fortify SCA For ScalaScala Security: Eliminate 200+ Code-Level Threats With Fortify SCA For Scala
Scala Security: Eliminate 200+ Code-Level Threats With Fortify SCA For Scala
Lightbend
 
Ad

Recently uploaded (20)

Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Eric D. Schabell
 
Douwan Crack 2025 new verson+ License code
Douwan Crack 2025 new verson+ License codeDouwan Crack 2025 new verson+ License code
Douwan Crack 2025 new verson+ License code
aneelaramzan63
 
Top 10 Client Portal Software Solutions for 2025.docx
Top 10 Client Portal Software Solutions for 2025.docxTop 10 Client Portal Software Solutions for 2025.docx
Top 10 Client Portal Software Solutions for 2025.docx
Portli
 
Adobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage Dashboards
Adobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage DashboardsAdobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage Dashboards
Adobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage Dashboards
BradBedford3
 
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& ConsiderationsDesigning AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Dinusha Kumarasiri
 
Download YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full ActivatedDownload YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full Activated
saniamalik72555
 
Automation Techniques in RPA - UiPath Certificate
Automation Techniques in RPA - UiPath CertificateAutomation Techniques in RPA - UiPath Certificate
Automation Techniques in RPA - UiPath Certificate
VICTOR MAESTRE RAMIREZ
 
Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)
Allon Mureinik
 
Kubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptxKubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptx
CloudScouts
 
EASEUS Partition Master Crack + License Code
EASEUS Partition Master Crack + License CodeEASEUS Partition Master Crack + License Code
EASEUS Partition Master Crack + License Code
aneelaramzan63
 
Exploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the FutureExploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the Future
ICS
 
How to Optimize Your AWS Environment for Improved Cloud Performance
How to Optimize Your AWS Environment for Improved Cloud PerformanceHow to Optimize Your AWS Environment for Improved Cloud Performance
How to Optimize Your AWS Environment for Improved Cloud Performance
ThousandEyes
 
WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)
sh607827
 
PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025
mu394968
 
Revolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptxRevolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptx
nidhisingh691197
 
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdfMicrosoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
TechSoup
 
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
Andre Hora
 
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Lionel Briand
 
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
steaveroggers
 
Solidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license codeSolidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license code
aneelaramzan63
 
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Eric D. Schabell
 
Douwan Crack 2025 new verson+ License code
Douwan Crack 2025 new verson+ License codeDouwan Crack 2025 new verson+ License code
Douwan Crack 2025 new verson+ License code
aneelaramzan63
 
Top 10 Client Portal Software Solutions for 2025.docx
Top 10 Client Portal Software Solutions for 2025.docxTop 10 Client Portal Software Solutions for 2025.docx
Top 10 Client Portal Software Solutions for 2025.docx
Portli
 
Adobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage Dashboards
Adobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage DashboardsAdobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage Dashboards
Adobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage Dashboards
BradBedford3
 
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& ConsiderationsDesigning AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Dinusha Kumarasiri
 
Download YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full ActivatedDownload YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full Activated
saniamalik72555
 
Automation Techniques in RPA - UiPath Certificate
Automation Techniques in RPA - UiPath CertificateAutomation Techniques in RPA - UiPath Certificate
Automation Techniques in RPA - UiPath Certificate
VICTOR MAESTRE RAMIREZ
 
Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)
Allon Mureinik
 
Kubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptxKubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptx
CloudScouts
 
EASEUS Partition Master Crack + License Code
EASEUS Partition Master Crack + License CodeEASEUS Partition Master Crack + License Code
EASEUS Partition Master Crack + License Code
aneelaramzan63
 
Exploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the FutureExploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the Future
ICS
 
How to Optimize Your AWS Environment for Improved Cloud Performance
How to Optimize Your AWS Environment for Improved Cloud PerformanceHow to Optimize Your AWS Environment for Improved Cloud Performance
How to Optimize Your AWS Environment for Improved Cloud Performance
ThousandEyes
 
WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)
sh607827
 
PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025
mu394968
 
Revolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptxRevolutionizing Residential Wi-Fi PPT.pptx
Revolutionizing Residential Wi-Fi PPT.pptx
nidhisingh691197
 
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdfMicrosoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdf
TechSoup
 
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
Andre Hora
 
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Lionel Briand
 
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
steaveroggers
 
Solidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license codeSolidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license code
aneelaramzan63
 

Understanding Akka Streams, Back Pressure, and Asynchronous Architectures

  • 1. WEBINAR Understanding Akka Streams, Back Pressure and Asynchronous Architectures by Konrad Malawski (@ktosopl)
  • 2. Konrad `ktoso` Malawski Akka Team, Reactive Streams TCK, Persistence, HTTP
  • 3. Konrad `@ktosopl` Malawski akka.io typesafe.com geecon.org Java.pl / KrakowScala.pl sckrk.com GDGKrakow.pl lambdakrk.pl
  • 7. Akka Streams Akka Streams && Reactive Streams
  • 9. Why back-pressure? So you’ve built your app and it’s awesome.
  • 10. Why back-pressure? Let’s not smash it horribly under load.
  • 13. No no no…! Not THAT Back-pressure! No no no…! Not THAT Back-pressure! What is back-pressure?
  • 15. Fast Publisher Slow Subscriber Push model
  • 16. Subscriber usually has some kind of buffer. Push model
  • 19. What if the buffer overflows? Push model
  • 20. Use bounded buffer, drop messages + require re-sending Push model
  • 21. Kernel does this! Routers do this! (TCP) Use bounded buffer, drop messages + require re-sending Push model
  • 22. Increase buffer size… Well, while you have memory available! Push model
  • 24. Reactive Streams explained Reactive Streams explained in 1 slide
  • 25. Fast Publisher will send at-most 3 elements. This is pull-based-backpressure. Reactive Streams: “dynamic push/pull”
  • 26. JEP-266 – soon…! public final class Flow { private Flow() {} // uninstantiable @FunctionalInterface public static interface Publisher<T> { public void subscribe(Subscriber<? super T> subscriber); } public static interface Subscriber<T> { public void onSubscribe(Subscription subscription); public void onNext(T item); public void onError(Throwable throwable); public void onComplete(); } public static interface Subscription { public void request(long n); public void cancel(); } public static interface Processor<T,R> extends Subscriber<T>, Publisher<R> { } }
  • 27. Reactive Streams: goals 1) Avoiding unbounded buffering across async boundaries 2)Inter-op interfaces between various libraries
  • 28. Reactive Streams: goals 1) Avoiding unbounded buffering across async boundaries 2)Inter-op interfaces between various libraries Argh, implementing a correct RS Publisher or Subscriber is so hard!
  • 29. Reactive Streams: goals 1) Avoiding unbounded buffering across async boundaries 2)Inter-op interfaces between various libraries Argh, implementing a correct RS Publisher or Subscriber is so hard!
  • 30. Reactive Streams: goals 1) Avoiding unbounded buffering across async boundaries 2)Inter-op interfaces between various libraries Argh, implementing a correct RS Publisher or Subscriber is so hard! You should be using Akka Streams abstractions instead!
  • 31. Akka Streams Streams complement Actors, they do not replace them. Actors – distribution (location transparency) Streams – back-pressured + more rigid-blueprint
  • 32. Akka is a Toolkit, pick the right tools for the job. Runar’s excellent talk @ Scala.World 2015 Asynchronous processing toolbox: Power Constraints
  • 33. Akka is a Toolkit, pick the right tools for the job. Asynchronous processing toolbox: Constraints Power
  • 34. Akka is a Toolkit, pick the right tools for the job. Single value, no streaming by definition. Local abstraction.
 Execution contexts. Power Constraints
  • 35. Akka is a Toolkit, pick the right tools for the job. Mostly static processing layouts. Well typed and Back-pressured! Constraints Power
  • 36. Akka is a Toolkit, pick the right tools for the job. Plain Actor’s younger brother, experimental. Location transparent, well typed. Technically unconstrained in actions performed Constraints Power
  • 37. Akka is a Toolkit, pick the right tools for the job. Runar’s excellent talk @ Scala.World 2015 Location transparent. Various resilience mechanisms. (watching, persistent recovering, migration, pools) Untyped and unconstrained in actions performed. Constraints Power
  • 39. Akka Streams in 20 seconds: // types: Source[Out, Mat] Flow[In, Out, Mat] Sink[In, Mat] // generally speaking, it's always: val ready = Source(???).via(flow).map(_ * 2).to(sink) val mat: Mat = ready.run() // the usual example: val f: Future[String] = Source.single(1).map(_.toString).runWith(Sink.head) Proper static typing!
  • 40. Akka Streams in 20 seconds: // types: _ Source[Int, Unit] Flow[Int, String, Unit] Sink[String, Future[String]] Source.single(1).map(_.toString).runWith(Sink.head)
  • 41. Akka Streams in 20 seconds: // types: _ Source[Int, Unit] Flow[Int, String, Unit] Sink[String, Future[String]] Source.single(1).map(_.toString).runWith(Sink.head)
  • 42. Materialization Gears from GeeCON.org, did I mention it’s an awesome conf?
  • 47. Akka Streams & HTTP streams & HTTP
  • 48. Akka HTTP Joint effort of Spray and Akka teams. Complete HTTP Server/Client implementation. Learns from Spray’s 3-4 years history. Since the beginning with streaming as first class citizen. Side note: Lagom also utilises Akka Streams for streaming.
  • 49. Streaming in Akka HTTP DEMO http://doc.akka.io/docs/akka/2.4.7/scala/stream/stream-customize.html#graphstage-scala “Framed entity streaming” https://github.com/akka/akka/pull/20778 HttpServer as a: Flow[HttpRequest, HttpResponse]
  • 50. Streaming in Akka HTTP DEMO http://doc.akka.io/docs/akka/2.4.7/scala/stream/stream-customize.html#graphstage-scala “Framed entity streaming” https://github.com/akka/akka/pull/20778 HttpServer as a: Flow[HttpRequest, HttpResponse] HTTP Entity as a: Source[ByteString, _]
  • 51. Streaming in Akka HTTP DEMO http://doc.akka.io/docs/akka/2.4.7/scala/stream/stream-customize.html#graphstage-scala “Framed entity streaming” https://github.com/akka/akka/pull/20778 HttpServer as a: Flow[HttpRequest, HttpResponse] HTTP Entity as a: Source[ByteString, _] Websocket connection as a: Flow[ws.Message, ws.Message]
  • 52. Persistence Query (experimental) “The Query Side” of Akka Persistence
  • 53. Persistence Query (experimental) Persistence Query Journals akka/akka-persistence-cassandra 0.16 akka/akka @ leveldb-journal 2.4.8 dnvriend/akka-persistence-jdbc 2.3.3 scullxbones/akka-persistence-mongo 1.2.5 …and more, that I likely forgot about. Implementation of “data-pump” pattern.
  • 54. Akka + Kafka = BFF Reactive Kafka + Started by Krzysiek Ciesielski & Adam Warski @ SofwareMill.com
  • 56. Kafka + Akka = BFF Akka is Arbitrary processing. Kafka is somewhat more than a message queue, but very focused on “the log”. Spark shines with it’s data-science focus.
  • 57. Kafka + Akka = BFF
  • 58. Kafka + Akka = BFF
  • 59. Streams talking to Actors && Actors talking to Streams
  • 60. Streams <=> Actors inter-op Source.actorRef (no back-pressure) Source.queue (safe) Sink.actorRef (no back-pressure) Sink.actorRefWithAck (safe)
  • 62. Next steps for Akka Completely new Akka Remoting (goal: 1M+ msg/s (!)), (it is built using Akka Streams). More integrations for Akka Streams stages, also dynamic fan-in/out A.K.A.“the Hub”. Reactive Kafka polishing and stable release with SoftwareMill. “Confirmed Streams” work from Reactive Kafka generalised. Akka Typed likely to progress again. Of course, continued maintenance of Cluster and others.
  • 63. Upgrade your grey matter
 Two free O’Reilly eBooks by Lightbend DOWNLOAD NOWDOWNLOAD NOW
  • 64. lightbend.com/pov Reactive Roundtable
 World Tour by Lightbend lightbend.com/reactive-roundtable Proof of Value Service
 Accelerate Project Success
  • 65. Q/A ktoso @ lightbend.com twitter: ktosopl github: ktoso team blog: letitcrash.com home: akka.io