Topics :
Introduction to unsupervised learning
Unsupervised learning Algorithms and Assumptions
K-Means algorithm – introduction
Implementation of K-means algorithm
Hierarchical Clustering – need and importance of hierarchical clustering
Agglomerative Hierarchical Clustering
Working of dendrogram
Steps for implementation of AHC using Python
Gaussian Mixture Models – Introduction, importance and need of the model
Normal , Gaussian distribution
Implementation of Gaussian mixture model
Understand the different distance metrics used in clustering
Euclidean, Manhattan, Cosine, Mahala Nobis
Features of a Cluster – Labels, Centroids, Inertia, Eigen vectors and Eigen values
Principal component analysis
Supervised learning (classification)
Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
New data is classified based on the training set
Unsupervised learning (clustering)
The class labels of training data is unknown
Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data
Types of Hierarchical Clustering
There are mainly two types of hierarchical clustering:
Agglomerative hierarchical clustering
Divisive Hierarchical clustering
A distribution in statistics is a function that shows the possible values for a variable and how often they occur.
In probability theory and statistics, the Normal Distribution, also called the Gaussian Distribution.
is the most significant continuous probability distribution.
Sometimes it is also called a bell curve.