Object detection and recognition are important problems in computer vision and pattern recognition
domain. Human beings are able to detect and classify objects effortlessly but replication of this ability on
computer based systems has proved to be a non-trivial task. In particular, despite significant research
efforts focused on meta-heuristic object detection and recognition, robust and reliable object recognition
systems in real time remain elusive. Here we present a survey of one particular approach that has proved
very promising for invariant feature recognition and which is a key initial stage of multi-stage network
architecture methods for the high level task of object recognition.