SlideShare a Scribd company logo
Solving sessionization
problem with Apache
Spark batch and
streaming processing
Bartosz Konieczny
@waitingforcode1
About me
Bartosz Konieczny
#dataEngineer #ApacheSparkEnthusiast #AWSuser
#waitingforcode.com #becomedataengineer.com
#@waitingforcode #github.com/bartosz25
#canalplus #Paris
2
3
Sessions
"user activity followed by a
closing action or a period of
inactivity"
4
5
© https://pixabay.com/users/maxmann-665103/ from https://pixabay.com
Batch architecture
6
data producer
sync consumer input logs
(DFS)
input logs
(streaming broker)
orchestrator
sessions
generator
<triggers>
previous
window raw
sessions
(DFS)
output
sessions
(DFS)
Streaming architecture
7
data producer
sessions
generator
output
sessions
(DFS)
metadata state
<uses>
checkpoint location
input logs
(streaming broker)
Batch
implementation
The code
val previousSessions = loadPreviousWindowSessions(sparkSession,
previousSessionsDir)
val sessionsInWindow = sparkSession.read.schema(Visit.Schema)
.json(inputDir)
val joinedData = previousSessions.join(sessionsInWindow,
sessionsInWindow("user_id") === previousSessions("userId"), "fullouter")
.groupByKey(log => SessionGeneration.resolveGroupByKey(log))
.flatMapGroups(SessionGeneration.generate(TimeUnit.MINUTES.toMillis(5),
windowUpperBound)).cache()
joinedData.filter("isActive = true").write.mode(SaveMode.Overwrite).json(outputDir)
joinedData.filter(state => !state.isActive)
.flatMap(state => state.toSessionOutputState)
.coalesce(50).write.mode(SaveMode.Overwrite)
.option("compression", "gzip")
.json(outputDir)
9
Full outer join
val previousSessions = loadPreviousWindowSessions(sparkSession,
previousSessionsDir)
val sessionsInWindow = sparkSession.read.schema(Visit.Schema)
.json(inputDir)
val joinedData = previousSessions.join(sessionsInWindow,
sessionsInWindow("user_id") === previousSessions("userId"), "fullouter")
.groupByKey(log => SessionGeneration.resolveGroupByKey(log))
.flatMapGroups(SessionGeneration.generate(TimeUnit.MINUTES.toMillis(5),
windowUpperBound))
joinedData.filter("isActive = true").write.mode(SaveMode.Overwrite).json(outputDir)
joinedData.filter(state => !state.isActive)
.flatMap(state => state.toSessionOutputState)
.coalesce(50).write.mode(SaveMode.Overwrite)
.option("compression", "gzip")
.json(outputDir)
10
processing logic
previous
window
active
sessions
new input
logs
full outer join
Watermark simulation
val previousSessions = loadPreviousWindowSessions(sparkSession,
previousSessionsDir)
val sessionsInWindow = sparkSession.read.schema(Visit.Schema)
.json(inputDir)
val joinedData = previousSessions.join(sessionsInWindow,
sessionsInWindow("user_id") === previousSessions("userId"), "fullouter")
.groupByKey(log => SessionGeneration.resolveGroupByKey(log))
.flatMapGroups(SessionGeneration.generate(TimeUnit.MINUTES.toMillis(5),
windowUpperBound))
joinedData.filter("isActive = true").write.mode(SaveMode.Overwrite).json(outputDir)
joinedData.filter(state => !state.isActive)
.flatMap(state => state.toSessionOutputState)
.coalesce(50).write.mode(SaveMode.Overwrite)
.option("compression", "gzip")
.json(outputDir)
case class SessionIntermediaryState(userId:
Long, … expirationTimeMillisUtc: Long,
isActive: Boolean)
11
Save modes
val previousSessions = loadPreviousWindowSessions(sparkSession,
previousSessionsDir)
val sessionsInWindow = sparkSession.read.schema(Visit.Schema)
.json(inputDir)
val joinedData = previousSessions.join(sessionsInWindow,
sessionsInWindow("user_id") === previousSessions("userId"), "fullouter")
.groupByKey(log => SessionGeneration.resolveGroupByKey(log))
.flatMapGroups(SessionGeneration.generate(TimeUnit.MINUTES.toMillis(5),
windowUpperBound))
joinedData.filter("isActive = true").write.mode(SaveMode.Overwrite).json(outputDir)
joinedData.filter(state => !state.isActive)
.flatMap(state => state.toSessionOutputState)
.coalesce(50).write.mode(SaveMode.Overwrite)
.option("compression", "gzip")
.json(outputDir)
SaveMode.Append ⇒
duplicates & invalid results
(e.g. multiplied revenue!)
SaveMode.ErrorIfExists ⇒
failures & maintenance
burden
SaveMode.Ignore ⇒ no
data & old data present in
case of reprocessing
SaveMode.Overwrite ⇒
always fresh data & easy
maintenance
12
Streaming
implementation
The code
val writeQuery = query.writeStream.outputMode(OutputMode.Update())
.option("checkpointLocation", s"s3://my-checkpoint-bucket")
.foreachBatch((dataset: Dataset[SessionIntermediaryState], batchId: Long) => {
BatchWriter.writeDataset(dataset, s"${outputDir}/${batchId}")
})
val dataFrame = sparkSession.readStream
.format("kafka")
.option("kafka.bootstrap.servers", kafkaConfiguration.broker).option(...) .load()
val query = dataFrame.selectExpr("CAST(value AS STRING)")
.select(functions.from_json($"value", Visit.Schema).as("data"))
.select($"data.*").withWatermark("event_time", "3 minutes")
.groupByKey(row => row.getAs[Long]("user_id"))
.mapGroupsWithState(GroupStateTimeout.EventTimeTimeout())
(mapStreamingLogsToSessions(sessionTimeout))
watermark - late events & state
expiration
stateful processing - sessions
generation
checkpoint - fault-tolerance
14
Checkpoint - fault-tolerance
load state
for t0
query
load offsets
to process &
write them
for t1
query
process data
write
processed
offsets
write state
checkpoint location
state store offset log commit log
val writeQuery = query.writeStream.outputMode(OutputMode.Update())
.option("checkpointLocation", s"s3://sessionization-demo/checkpoint")
.foreachBatch((dataset: Dataset[SessionIntermediaryState], batchId: Long) => {
BatchWriter.writeDataset(dataset, s"${outputDir}/${batchId}")
})
.start()
15
Checkpoint - fault-tolerance
load state
for t1
query
load offsets
to process &
write them
for t1
query
process data
confirm
processed
offsets &
next
watermark
commit state
t2
partition-based
checkpoint location
state store offset log commit log
16
Stateful processing
update
remove
get
getput,remove
write update
finalize file
make snapshot
recover state
def mapStreamingLogsToSessions(timeoutDurationMs: Long)(key: Long, logs: Iterator[Row],
currentState: GroupState[SessionIntermediaryState]): SessionIntermediaryState = {
if (currentState.hasTimedOut) {
val expiredState = currentState.get.expire
currentState.remove()
expiredState
} else {
val newState = currentState.getOption.map(state => state.updateWithNewLogs(logs, timeoutDurationMs))
.getOrElse(SessionIntermediaryState.createNew(logs, timeoutDurationMs))
currentState.update(newState)
currentState.setTimeoutTimestamp(currentState.getCurrentWatermarkMs() + timeoutDurationMs)
currentState.get
}
}
17
Stateful processing
update
remove
get
getput,remove
- write update
- finalize file
- make snapshot
recover state
18
.mapGroupsWithState(...)
state store
TreeMap[Long,
ConcurrentHashMap[UnsafeRow,
UnsafeRow]
]
in-memory storage for the most
recent versions
1.delta
2.delta
3.snapshot
checkpoint
location
Watermark
val sessionTimeout = TimeUnit.MINUTES.toMillis(5)
val query = dataFrame.selectExpr("CAST(value AS STRING)")
.select(functions.from_json($"value", Visit.Schema).as("data"))
.select($"data.*")
.withWatermark("event_time", "3 minutes")
.groupByKey(row => row.getAs[Long]("user_id"))
.mapGroupsWithState(GroupStateTimeout.EventTimeTimeout())
(Mapping.mapStreamingLogsToSessions(sessionTimeout))
19
Watermark - late events
on-time
event
late
event
20
.mapGroupsWithState(...)
Watermark - expired state
State representation [simplified]
{value, TTL configuration}
Algorithm:
1. Update all states with new data → eventually extend TTL
2. Retrieve TTL configuration for the query → here: watermark
3. Retrieve all states that expired → no new data in this query & TTL expired
4. Call mapGroupsWithState on it with hasTimedOut param = true & no new data
(Iterator.empty)
// full implementation: org.apache.spark.sql.execution.streaming.FlatMapGroupsWithStateExec.InputProcessor
21
Data reprocessing
Batch
reschedule your job
© https://pics.me.me/just-one-click-and-the-zoo-is-mine-8769663.png
Streaming
Using Apache Spark to Solve Sessionization Problem in Batch and Streaming
State store
1. Restored state is the most recent snapshot
2. Restored state is not the most recent snapshot but a snapshot exists
3. Restored state is not the most recent snapshot and a snapshot doesn't exist
27
1.delta 3.snapshot2.delta
1.delta 3.snapshot2.delta 4.delta
1.delta 3.delta2.delta 4.delta
State store configuration
spark.sql.streaming.stateStore:
→ .minDeltasForSnapshot
→ .maintenanceInterval
28
spark.sql.streaming:
→ .maxBatchesToRetainInMemory
Checkpoint configuration
spark.sql.streaming.minBatchesToRetain
29
Few takeaways
● yet another TDD acronym - Trade-Off Driven Development
○ simplicity for latency
○ simplicity for accuracy
○ scaling for latency
● AWS
○ Kinesis - short retention period = reprocessing boundary, connector
○ S3 - trade reliability for performance
○ EMR - transient cluster
○ Redshift - COPY
● Apache Spark
○ watermarks everywhere - batch simulation
○ state store configuration
○ restore mechanism
○ overwrite idempotent mode
30
Resources
● https://github.com/bartosz25/sessionization-de
mo
● https://www.waitingforcode.com/tags/spark-ai-s
ummit-europe-2019-articles
31
Thank you!Bartosz Konieczny
@waitingforcode / github.com/bartosz25 / waitingforcode.com
Canal+
@canaltechteam
Ad

More Related Content

What's hot (20)

Redis + Structured Streaming—A Perfect Combination to Scale-Out Your Continuo...
Redis + Structured Streaming—A Perfect Combination to Scale-Out Your Continuo...Redis + Structured Streaming—A Perfect Combination to Scale-Out Your Continuo...
Redis + Structured Streaming—A Perfect Combination to Scale-Out Your Continuo...
Databricks
 
Apache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper OptimizationApache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper Optimization
Databricks
 
Top 10 Mistakes When Migrating From Oracle to PostgreSQL
Top 10 Mistakes When Migrating From Oracle to PostgreSQLTop 10 Mistakes When Migrating From Oracle to PostgreSQL
Top 10 Mistakes When Migrating From Oracle to PostgreSQL
Jim Mlodgenski
 
Apache Spark Architecture
Apache Spark ArchitectureApache Spark Architecture
Apache Spark Architecture
Alexey Grishchenko
 
A Deep Dive into Spark SQL's Catalyst Optimizer with Yin Huai
A Deep Dive into Spark SQL's Catalyst Optimizer with Yin HuaiA Deep Dive into Spark SQL's Catalyst Optimizer with Yin Huai
A Deep Dive into Spark SQL's Catalyst Optimizer with Yin Huai
Databricks
 
Modularized ETL Writing with Apache Spark
Modularized ETL Writing with Apache SparkModularized ETL Writing with Apache Spark
Modularized ETL Writing with Apache Spark
Databricks
 
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Flink Forward
 
Change Data Feed in Delta
Change Data Feed in DeltaChange Data Feed in Delta
Change Data Feed in Delta
Databricks
 
Batch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & IcebergBatch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & Iceberg
Flink Forward
 
Apache Spark At Scale in the Cloud
Apache Spark At Scale in the CloudApache Spark At Scale in the Cloud
Apache Spark At Scale in the Cloud
Databricks
 
Etl overview training
Etl overview trainingEtl overview training
Etl overview training
Mondy Holten
 
Performance Optimizations in Apache Impala
Performance Optimizations in Apache ImpalaPerformance Optimizations in Apache Impala
Performance Optimizations in Apache Impala
Cloudera, Inc.
 
Understanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIsUnderstanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIs
Databricks
 
Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...
Flink Forward
 
Introduction to PostgreSQL
Introduction to PostgreSQLIntroduction to PostgreSQL
Introduction to PostgreSQL
Jim Mlodgenski
 
A Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and HudiA Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and Hudi
Databricks
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
Mike Dirolf
 
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark Summit
 
Optimizing Delta/Parquet Data Lakes for Apache Spark
Optimizing Delta/Parquet Data Lakes for Apache SparkOptimizing Delta/Parquet Data Lakes for Apache Spark
Optimizing Delta/Parquet Data Lakes for Apache Spark
Databricks
 
Nosql data models
Nosql data modelsNosql data models
Nosql data models
Viet-Trung TRAN
 
Redis + Structured Streaming—A Perfect Combination to Scale-Out Your Continuo...
Redis + Structured Streaming—A Perfect Combination to Scale-Out Your Continuo...Redis + Structured Streaming—A Perfect Combination to Scale-Out Your Continuo...
Redis + Structured Streaming—A Perfect Combination to Scale-Out Your Continuo...
Databricks
 
Apache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper OptimizationApache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper Optimization
Databricks
 
Top 10 Mistakes When Migrating From Oracle to PostgreSQL
Top 10 Mistakes When Migrating From Oracle to PostgreSQLTop 10 Mistakes When Migrating From Oracle to PostgreSQL
Top 10 Mistakes When Migrating From Oracle to PostgreSQL
Jim Mlodgenski
 
A Deep Dive into Spark SQL's Catalyst Optimizer with Yin Huai
A Deep Dive into Spark SQL's Catalyst Optimizer with Yin HuaiA Deep Dive into Spark SQL's Catalyst Optimizer with Yin Huai
A Deep Dive into Spark SQL's Catalyst Optimizer with Yin Huai
Databricks
 
Modularized ETL Writing with Apache Spark
Modularized ETL Writing with Apache SparkModularized ETL Writing with Apache Spark
Modularized ETL Writing with Apache Spark
Databricks
 
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Flink Forward
 
Change Data Feed in Delta
Change Data Feed in DeltaChange Data Feed in Delta
Change Data Feed in Delta
Databricks
 
Batch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & IcebergBatch Processing at Scale with Flink & Iceberg
Batch Processing at Scale with Flink & Iceberg
Flink Forward
 
Apache Spark At Scale in the Cloud
Apache Spark At Scale in the CloudApache Spark At Scale in the Cloud
Apache Spark At Scale in the Cloud
Databricks
 
Etl overview training
Etl overview trainingEtl overview training
Etl overview training
Mondy Holten
 
Performance Optimizations in Apache Impala
Performance Optimizations in Apache ImpalaPerformance Optimizations in Apache Impala
Performance Optimizations in Apache Impala
Cloudera, Inc.
 
Understanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIsUnderstanding Query Plans and Spark UIs
Understanding Query Plans and Spark UIs
Databricks
 
Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...Tame the small files problem and optimize data layout for streaming ingestion...
Tame the small files problem and optimize data layout for streaming ingestion...
Flink Forward
 
Introduction to PostgreSQL
Introduction to PostgreSQLIntroduction to PostgreSQL
Introduction to PostgreSQL
Jim Mlodgenski
 
A Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and HudiA Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and Hudi
Databricks
 
Introduction to MongoDB
Introduction to MongoDBIntroduction to MongoDB
Introduction to MongoDB
Mike Dirolf
 
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark Summit
 
Optimizing Delta/Parquet Data Lakes for Apache Spark
Optimizing Delta/Parquet Data Lakes for Apache SparkOptimizing Delta/Parquet Data Lakes for Apache Spark
Optimizing Delta/Parquet Data Lakes for Apache Spark
Databricks
 

Similar to Using Apache Spark to Solve Sessionization Problem in Batch and Streaming (20)

Flink 0.10 @ Bay Area Meetup (October 2015)
Flink 0.10 @ Bay Area Meetup (October 2015)Flink 0.10 @ Bay Area Meetup (October 2015)
Flink 0.10 @ Bay Area Meetup (October 2015)
Stephan Ewen
 
[JEEConf-2017] RxJava as a key component in mature Big Data product
[JEEConf-2017] RxJava as a key component in mature Big Data product[JEEConf-2017] RxJava as a key component in mature Big Data product
[JEEConf-2017] RxJava as a key component in mature Big Data product
Igor Lozynskyi
 
Kick your database_to_the_curb_reston_08_27_19
Kick your database_to_the_curb_reston_08_27_19Kick your database_to_the_curb_reston_08_27_19
Kick your database_to_the_curb_reston_08_27_19
confluent
 
Online Meetup: Why should container system / platform builders care about con...
Online Meetup: Why should container system / platform builders care about con...Online Meetup: Why should container system / platform builders care about con...
Online Meetup: Why should container system / platform builders care about con...
Docker, Inc.
 
Deep dive into stateful stream processing in structured streaming by Tathaga...
Deep dive into stateful stream processing in structured streaming  by Tathaga...Deep dive into stateful stream processing in structured streaming  by Tathaga...
Deep dive into stateful stream processing in structured streaming by Tathaga...
Databricks
 
Meetup spark structured streaming
Meetup spark structured streamingMeetup spark structured streaming
Meetup spark structured streaming
José Carlos García Serrano
 
GDG Jakarta Meetup - Streaming Analytics With Apache Beam
GDG Jakarta Meetup - Streaming Analytics With Apache BeamGDG Jakarta Meetup - Streaming Analytics With Apache Beam
GDG Jakarta Meetup - Streaming Analytics With Apache Beam
Imre Nagi
 
Spark streaming with kafka
Spark streaming with kafkaSpark streaming with kafka
Spark streaming with kafka
Dori Waldman
 
Spark stream - Kafka
Spark stream - Kafka Spark stream - Kafka
Spark stream - Kafka
Dori Waldman
 
A new kind of BPM with Activiti
A new kind of BPM with ActivitiA new kind of BPM with Activiti
A new kind of BPM with Activiti
Alfresco Software
 
Reactive programming every day
Reactive programming every dayReactive programming every day
Reactive programming every day
Vadym Khondar
 
Continuous Application with Structured Streaming 2.0
Continuous Application with Structured Streaming 2.0Continuous Application with Structured Streaming 2.0
Continuous Application with Structured Streaming 2.0
Anyscale
 
JavaZone 2014 - goto java;
JavaZone 2014 - goto java;JavaZone 2014 - goto java;
JavaZone 2014 - goto java;
Martin (高馬丁) Skarsaune
 
こわくないよ❤️ Playframeworkソースコードリーディング入門
こわくないよ❤️ Playframeworkソースコードリーディング入門こわくないよ❤️ Playframeworkソースコードリーディング入門
こわくないよ❤️ Playframeworkソースコードリーディング入門
tanacasino
 
Introducing the WSO2 Complex Event Processor
Introducing the WSO2 Complex Event ProcessorIntroducing the WSO2 Complex Event Processor
Introducing the WSO2 Complex Event Processor
WSO2
 
Scalable Angular 2 Application Architecture
Scalable Angular 2 Application ArchitectureScalable Angular 2 Application Architecture
Scalable Angular 2 Application Architecture
FDConf
 
VPN Access Runbook
VPN Access RunbookVPN Access Runbook
VPN Access Runbook
Taha Shakeel
 
spring aop.pptx aspt oreinted programmin
spring aop.pptx aspt oreinted programminspring aop.pptx aspt oreinted programmin
spring aop.pptx aspt oreinted programmin
zmulani8
 
Event Sourcing - what could go wrong - Devoxx BE
Event Sourcing - what could go wrong - Devoxx BEEvent Sourcing - what could go wrong - Devoxx BE
Event Sourcing - what could go wrong - Devoxx BE
Andrzej Ludwikowski
 
Data in Motion: Streaming Static Data Efficiently
Data in Motion: Streaming Static Data EfficientlyData in Motion: Streaming Static Data Efficiently
Data in Motion: Streaming Static Data Efficiently
Martin Zapletal
 
Flink 0.10 @ Bay Area Meetup (October 2015)
Flink 0.10 @ Bay Area Meetup (October 2015)Flink 0.10 @ Bay Area Meetup (October 2015)
Flink 0.10 @ Bay Area Meetup (October 2015)
Stephan Ewen
 
[JEEConf-2017] RxJava as a key component in mature Big Data product
[JEEConf-2017] RxJava as a key component in mature Big Data product[JEEConf-2017] RxJava as a key component in mature Big Data product
[JEEConf-2017] RxJava as a key component in mature Big Data product
Igor Lozynskyi
 
Kick your database_to_the_curb_reston_08_27_19
Kick your database_to_the_curb_reston_08_27_19Kick your database_to_the_curb_reston_08_27_19
Kick your database_to_the_curb_reston_08_27_19
confluent
 
Online Meetup: Why should container system / platform builders care about con...
Online Meetup: Why should container system / platform builders care about con...Online Meetup: Why should container system / platform builders care about con...
Online Meetup: Why should container system / platform builders care about con...
Docker, Inc.
 
Deep dive into stateful stream processing in structured streaming by Tathaga...
Deep dive into stateful stream processing in structured streaming  by Tathaga...Deep dive into stateful stream processing in structured streaming  by Tathaga...
Deep dive into stateful stream processing in structured streaming by Tathaga...
Databricks
 
GDG Jakarta Meetup - Streaming Analytics With Apache Beam
GDG Jakarta Meetup - Streaming Analytics With Apache BeamGDG Jakarta Meetup - Streaming Analytics With Apache Beam
GDG Jakarta Meetup - Streaming Analytics With Apache Beam
Imre Nagi
 
Spark streaming with kafka
Spark streaming with kafkaSpark streaming with kafka
Spark streaming with kafka
Dori Waldman
 
Spark stream - Kafka
Spark stream - Kafka Spark stream - Kafka
Spark stream - Kafka
Dori Waldman
 
A new kind of BPM with Activiti
A new kind of BPM with ActivitiA new kind of BPM with Activiti
A new kind of BPM with Activiti
Alfresco Software
 
Reactive programming every day
Reactive programming every dayReactive programming every day
Reactive programming every day
Vadym Khondar
 
Continuous Application with Structured Streaming 2.0
Continuous Application with Structured Streaming 2.0Continuous Application with Structured Streaming 2.0
Continuous Application with Structured Streaming 2.0
Anyscale
 
こわくないよ❤️ Playframeworkソースコードリーディング入門
こわくないよ❤️ Playframeworkソースコードリーディング入門こわくないよ❤️ Playframeworkソースコードリーディング入門
こわくないよ❤️ Playframeworkソースコードリーディング入門
tanacasino
 
Introducing the WSO2 Complex Event Processor
Introducing the WSO2 Complex Event ProcessorIntroducing the WSO2 Complex Event Processor
Introducing the WSO2 Complex Event Processor
WSO2
 
Scalable Angular 2 Application Architecture
Scalable Angular 2 Application ArchitectureScalable Angular 2 Application Architecture
Scalable Angular 2 Application Architecture
FDConf
 
VPN Access Runbook
VPN Access RunbookVPN Access Runbook
VPN Access Runbook
Taha Shakeel
 
spring aop.pptx aspt oreinted programmin
spring aop.pptx aspt oreinted programminspring aop.pptx aspt oreinted programmin
spring aop.pptx aspt oreinted programmin
zmulani8
 
Event Sourcing - what could go wrong - Devoxx BE
Event Sourcing - what could go wrong - Devoxx BEEvent Sourcing - what could go wrong - Devoxx BE
Event Sourcing - what could go wrong - Devoxx BE
Andrzej Ludwikowski
 
Data in Motion: Streaming Static Data Efficiently
Data in Motion: Streaming Static Data EfficientlyData in Motion: Streaming Static Data Efficiently
Data in Motion: Streaming Static Data Efficiently
Martin Zapletal
 
Ad

More from Databricks (20)

DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
DW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks
 
Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks
 
Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2Data Lakehouse Symposium | Day 2
Data Lakehouse Symposium | Day 2
Databricks
 
Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks
 
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks
 
Democratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks
 
Learn to Use Databricks for Data Science
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks
 
Why APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks
 
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks
 
Stage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks
 
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks
 
Sawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature AggregationsSawtooth Windows for Feature Aggregations
Sawtooth Windows for Feature Aggregations
Databricks
 
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks
 
Re-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks
 
Raven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks
 
Processing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks
 
Massive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks
 
Ad

Recently uploaded (20)

ISO 9001_2015 FINALaaaaaaaaaaaaaaaa - MDX - Copy.pptx
ISO 9001_2015 FINALaaaaaaaaaaaaaaaa - MDX - Copy.pptxISO 9001_2015 FINALaaaaaaaaaaaaaaaa - MDX - Copy.pptx
ISO 9001_2015 FINALaaaaaaaaaaaaaaaa - MDX - Copy.pptx
pankaj6188303
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
Taqyea
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
Modern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx AaModern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx Aa
MuhammadAwaisKamboh
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Decision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdfDecision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdf
Saikat Basu
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
ISO 9001_2015 FINALaaaaaaaaaaaaaaaa - MDX - Copy.pptx
ISO 9001_2015 FINALaaaaaaaaaaaaaaaa - MDX - Copy.pptxISO 9001_2015 FINALaaaaaaaaaaaaaaaa - MDX - Copy.pptx
ISO 9001_2015 FINALaaaaaaaaaaaaaaaa - MDX - Copy.pptx
pankaj6188303
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Data Analytics Overview and its applications
Data Analytics Overview and its applicationsData Analytics Overview and its applications
Data Analytics Overview and its applications
JanmejayaMishra7
 
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
Taqyea
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Developing Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response ApplicationsDeveloping Security Orchestration, Automation, and Response Applications
Developing Security Orchestration, Automation, and Response Applications
VICTOR MAESTRE RAMIREZ
 
Classification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptxClassification_in_Machinee_Learning.pptx
Classification_in_Machinee_Learning.pptx
wencyjorda88
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
Modern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx AaModern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx Aa
MuhammadAwaisKamboh
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Decision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdfDecision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdf
Saikat Basu
 
GenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.aiGenAI for Quant Analytics: survey-analytics.ai
GenAI for Quant Analytics: survey-analytics.ai
Inspirient
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 

Using Apache Spark to Solve Sessionization Problem in Batch and Streaming

  • 1. Solving sessionization problem with Apache Spark batch and streaming processing Bartosz Konieczny @waitingforcode1
  • 2. About me Bartosz Konieczny #dataEngineer #ApacheSparkEnthusiast #AWSuser #waitingforcode.com #becomedataengineer.com #@waitingforcode #github.com/bartosz25 #canalplus #Paris 2
  • 3. 3
  • 4. Sessions "user activity followed by a closing action or a period of inactivity" 4
  • 6. Batch architecture 6 data producer sync consumer input logs (DFS) input logs (streaming broker) orchestrator sessions generator <triggers> previous window raw sessions (DFS) output sessions (DFS)
  • 7. Streaming architecture 7 data producer sessions generator output sessions (DFS) metadata state <uses> checkpoint location input logs (streaming broker)
  • 9. The code val previousSessions = loadPreviousWindowSessions(sparkSession, previousSessionsDir) val sessionsInWindow = sparkSession.read.schema(Visit.Schema) .json(inputDir) val joinedData = previousSessions.join(sessionsInWindow, sessionsInWindow("user_id") === previousSessions("userId"), "fullouter") .groupByKey(log => SessionGeneration.resolveGroupByKey(log)) .flatMapGroups(SessionGeneration.generate(TimeUnit.MINUTES.toMillis(5), windowUpperBound)).cache() joinedData.filter("isActive = true").write.mode(SaveMode.Overwrite).json(outputDir) joinedData.filter(state => !state.isActive) .flatMap(state => state.toSessionOutputState) .coalesce(50).write.mode(SaveMode.Overwrite) .option("compression", "gzip") .json(outputDir) 9
  • 10. Full outer join val previousSessions = loadPreviousWindowSessions(sparkSession, previousSessionsDir) val sessionsInWindow = sparkSession.read.schema(Visit.Schema) .json(inputDir) val joinedData = previousSessions.join(sessionsInWindow, sessionsInWindow("user_id") === previousSessions("userId"), "fullouter") .groupByKey(log => SessionGeneration.resolveGroupByKey(log)) .flatMapGroups(SessionGeneration.generate(TimeUnit.MINUTES.toMillis(5), windowUpperBound)) joinedData.filter("isActive = true").write.mode(SaveMode.Overwrite).json(outputDir) joinedData.filter(state => !state.isActive) .flatMap(state => state.toSessionOutputState) .coalesce(50).write.mode(SaveMode.Overwrite) .option("compression", "gzip") .json(outputDir) 10 processing logic previous window active sessions new input logs full outer join
  • 11. Watermark simulation val previousSessions = loadPreviousWindowSessions(sparkSession, previousSessionsDir) val sessionsInWindow = sparkSession.read.schema(Visit.Schema) .json(inputDir) val joinedData = previousSessions.join(sessionsInWindow, sessionsInWindow("user_id") === previousSessions("userId"), "fullouter") .groupByKey(log => SessionGeneration.resolveGroupByKey(log)) .flatMapGroups(SessionGeneration.generate(TimeUnit.MINUTES.toMillis(5), windowUpperBound)) joinedData.filter("isActive = true").write.mode(SaveMode.Overwrite).json(outputDir) joinedData.filter(state => !state.isActive) .flatMap(state => state.toSessionOutputState) .coalesce(50).write.mode(SaveMode.Overwrite) .option("compression", "gzip") .json(outputDir) case class SessionIntermediaryState(userId: Long, … expirationTimeMillisUtc: Long, isActive: Boolean) 11
  • 12. Save modes val previousSessions = loadPreviousWindowSessions(sparkSession, previousSessionsDir) val sessionsInWindow = sparkSession.read.schema(Visit.Schema) .json(inputDir) val joinedData = previousSessions.join(sessionsInWindow, sessionsInWindow("user_id") === previousSessions("userId"), "fullouter") .groupByKey(log => SessionGeneration.resolveGroupByKey(log)) .flatMapGroups(SessionGeneration.generate(TimeUnit.MINUTES.toMillis(5), windowUpperBound)) joinedData.filter("isActive = true").write.mode(SaveMode.Overwrite).json(outputDir) joinedData.filter(state => !state.isActive) .flatMap(state => state.toSessionOutputState) .coalesce(50).write.mode(SaveMode.Overwrite) .option("compression", "gzip") .json(outputDir) SaveMode.Append ⇒ duplicates & invalid results (e.g. multiplied revenue!) SaveMode.ErrorIfExists ⇒ failures & maintenance burden SaveMode.Ignore ⇒ no data & old data present in case of reprocessing SaveMode.Overwrite ⇒ always fresh data & easy maintenance 12
  • 14. The code val writeQuery = query.writeStream.outputMode(OutputMode.Update()) .option("checkpointLocation", s"s3://my-checkpoint-bucket") .foreachBatch((dataset: Dataset[SessionIntermediaryState], batchId: Long) => { BatchWriter.writeDataset(dataset, s"${outputDir}/${batchId}") }) val dataFrame = sparkSession.readStream .format("kafka") .option("kafka.bootstrap.servers", kafkaConfiguration.broker).option(...) .load() val query = dataFrame.selectExpr("CAST(value AS STRING)") .select(functions.from_json($"value", Visit.Schema).as("data")) .select($"data.*").withWatermark("event_time", "3 minutes") .groupByKey(row => row.getAs[Long]("user_id")) .mapGroupsWithState(GroupStateTimeout.EventTimeTimeout()) (mapStreamingLogsToSessions(sessionTimeout)) watermark - late events & state expiration stateful processing - sessions generation checkpoint - fault-tolerance 14
  • 15. Checkpoint - fault-tolerance load state for t0 query load offsets to process & write them for t1 query process data write processed offsets write state checkpoint location state store offset log commit log val writeQuery = query.writeStream.outputMode(OutputMode.Update()) .option("checkpointLocation", s"s3://sessionization-demo/checkpoint") .foreachBatch((dataset: Dataset[SessionIntermediaryState], batchId: Long) => { BatchWriter.writeDataset(dataset, s"${outputDir}/${batchId}") }) .start() 15
  • 16. Checkpoint - fault-tolerance load state for t1 query load offsets to process & write them for t1 query process data confirm processed offsets & next watermark commit state t2 partition-based checkpoint location state store offset log commit log 16
  • 17. Stateful processing update remove get getput,remove write update finalize file make snapshot recover state def mapStreamingLogsToSessions(timeoutDurationMs: Long)(key: Long, logs: Iterator[Row], currentState: GroupState[SessionIntermediaryState]): SessionIntermediaryState = { if (currentState.hasTimedOut) { val expiredState = currentState.get.expire currentState.remove() expiredState } else { val newState = currentState.getOption.map(state => state.updateWithNewLogs(logs, timeoutDurationMs)) .getOrElse(SessionIntermediaryState.createNew(logs, timeoutDurationMs)) currentState.update(newState) currentState.setTimeoutTimestamp(currentState.getCurrentWatermarkMs() + timeoutDurationMs) currentState.get } } 17
  • 18. Stateful processing update remove get getput,remove - write update - finalize file - make snapshot recover state 18 .mapGroupsWithState(...) state store TreeMap[Long, ConcurrentHashMap[UnsafeRow, UnsafeRow] ] in-memory storage for the most recent versions 1.delta 2.delta 3.snapshot checkpoint location
  • 19. Watermark val sessionTimeout = TimeUnit.MINUTES.toMillis(5) val query = dataFrame.selectExpr("CAST(value AS STRING)") .select(functions.from_json($"value", Visit.Schema).as("data")) .select($"data.*") .withWatermark("event_time", "3 minutes") .groupByKey(row => row.getAs[Long]("user_id")) .mapGroupsWithState(GroupStateTimeout.EventTimeTimeout()) (Mapping.mapStreamingLogsToSessions(sessionTimeout)) 19
  • 20. Watermark - late events on-time event late event 20 .mapGroupsWithState(...)
  • 21. Watermark - expired state State representation [simplified] {value, TTL configuration} Algorithm: 1. Update all states with new data → eventually extend TTL 2. Retrieve TTL configuration for the query → here: watermark 3. Retrieve all states that expired → no new data in this query & TTL expired 4. Call mapGroupsWithState on it with hasTimedOut param = true & no new data (Iterator.empty) // full implementation: org.apache.spark.sql.execution.streaming.FlatMapGroupsWithStateExec.InputProcessor 21
  • 23. Batch
  • 24. reschedule your job © https://pics.me.me/just-one-click-and-the-zoo-is-mine-8769663.png
  • 27. State store 1. Restored state is the most recent snapshot 2. Restored state is not the most recent snapshot but a snapshot exists 3. Restored state is not the most recent snapshot and a snapshot doesn't exist 27 1.delta 3.snapshot2.delta 1.delta 3.snapshot2.delta 4.delta 1.delta 3.delta2.delta 4.delta
  • 28. State store configuration spark.sql.streaming.stateStore: → .minDeltasForSnapshot → .maintenanceInterval 28 spark.sql.streaming: → .maxBatchesToRetainInMemory
  • 30. Few takeaways ● yet another TDD acronym - Trade-Off Driven Development ○ simplicity for latency ○ simplicity for accuracy ○ scaling for latency ● AWS ○ Kinesis - short retention period = reprocessing boundary, connector ○ S3 - trade reliability for performance ○ EMR - transient cluster ○ Redshift - COPY ● Apache Spark ○ watermarks everywhere - batch simulation ○ state store configuration ○ restore mechanism ○ overwrite idempotent mode 30
  • 32. Thank you!Bartosz Konieczny @waitingforcode / github.com/bartosz25 / waitingforcode.com Canal+ @canaltechteam