In recent years, big data has moved from batch processing to stream-based processing since no one wants to wait hours or days to gain insights. Dozens of stream processing frameworks exist today and the same trend that occurred in the batch-based big data processing realm has taken place in the streaming world so that nearly every streaming framework now supports higher level relational operations. On paper, combining Apache NiFi, Kafka, and Spark Streaming provides a compelling architecture option for building your next generation ETL data pipeline in near real time. What does this look like in an enterprise production environment to deploy and operationalized? The newer Spark Structured Streaming provides fast, scalable, fault-tolerant, end-to-end exactly-once stream processing with elegant code samples, but is that the whole story? We discuss the drivers and expected benefits of changing the existing event processing systems. In presenting the integrated solution, we will explore the key components of using NiFi, Kafka, and Spark, then share the good, the bad, and the ugly when trying to adopt these technologies into the enterprise. This session is targeted toward architects and other senior IT staff looking to continue their adoption of open source technology and modernize ingest/ETL processing. Attendees will take away lessons learned and experience in deploying these technologies to make their journey easier. Speaker: Andrew Psaltis, Principal Solution Engineer, Hortonworks