SlideShare a Scribd company logo
Utilizing Human Data Validation
for KPI Analysis
and Machine Learning
Dan Morris
Radius Intelligence
Overview and Key Takeaways
• Data science problems @ Radius

• Human validation: costs and benefits

• Sampling and experimentation for multiple consumers

• Positive feedback cycles in production
Radius - B2B Predictive Marketing
Radius - Data Engineering
MLlib
Why Human Validation?
• Business firmographic data is a difficult data problem

• Our sources face the same challenges that we do

• Each source must be considered a “proposal”

• Independent Human Validation is (the closest thing to)
ground truth
Degrees of Human Validation
• Prompted Validation

• Research Validation
• Research Curation
Value
Cost
PV
RV
RC
Prompted Validation
Example Assignment:
Verify the Phone Number and
Address of a Business
Research Validation
Example Assignment:
Determine if a Business
Belongs to a Chain / Franchise
Business Name: Bob’s Donuts
Address: 123 Main St.
Website: www.bobsdonuts.biz
Industry: Limited Service Restaurants
Is Chain: (Y / N / U)
Chain Type: (Local / Regional / National)
Research Curation
Example Assignment:
Where is the Headquarters of
this Company Located?
Company Name: Bob’s Donuts Inc.
Website: www.bobsdonuts.biz
Has many locations: (Y / N / U)
HQ Location: ???
Source of information: ???
Human Validation: Benefits
• Ground Truth
• Supervised ML
• Internal Metrics
• Competitive Analysis

• Our customers are humans, too!
Human Validation: Costs
• Money
• Time

• Us and Them
Cost: Money
• Validated data costs more than aggregated data
>
Validation + Data Science
Pure Validation
Cost: Time
• Automated experimental framework
• Shift bottleneck to validation teams

• Parallelized validation improves turnaround time
• Be mindful of differences in teams / validators
• Decay / Obsolescence of validations
Cost: Us and Them
Clearly communicate expectations and interpretations
Uses for Validated Data
• KPI Analysis
• ML Training Sets
• Spot Hypothesis
Validation
Challenge: minimize number of validations
while meeting all downstream needs
Multiple-Consumer Sampling
Standalone vs. Chain Experiment
1 value per 1 location == Easy Sampling!
Multiple-Consumer Sampling
Phone Accuracy Experiment
(0, 1, 2, 3, …) values to 1 location == Difficult Sampling.
Basic Production Pipeline
Positive Feedback Production Cycle
THANKS!
email me: dan.morris@radius.com
stalk me: @djsensei
connect me: linkedin.com/in/danielepmorris
work with me: radius.com/jobs
Ad

More Related Content

What's hot (20)

Industrial Data Science
Industrial Data ScienceIndustrial Data Science
Industrial Data Science
Niko Vuokko
 
Understanding DataOps and Its Impact on Application Quality
Understanding DataOps and Its Impact on Application QualityUnderstanding DataOps and Its Impact on Application Quality
Understanding DataOps and Its Impact on Application Quality
DevOps.com
 
Effective Cost Management for Amazon EMR
Effective Cost Management for Amazon EMREffective Cost Management for Amazon EMR
Effective Cost Management for Amazon EMR
DevOps.com
 
Measuring Data Quality with DataOps
Measuring Data Quality with DataOpsMeasuring Data Quality with DataOps
Measuring Data Quality with DataOps
Steven Ensslen
 
Real time analytics @ netflix
Real time analytics @ netflixReal time analytics @ netflix
Real time analytics @ netflix
Cody Rioux
 
H2O World - Self Guiding Applications with Venkatesh Yadav
H2O World - Self Guiding Applications with Venkatesh YadavH2O World - Self Guiding Applications with Venkatesh Yadav
H2O World - Self Guiding Applications with Venkatesh Yadav
Sri Ambati
 
Real time machine learning
Real time machine learningReal time machine learning
Real time machine learning
Vinoth Kannan
 
Dataiku - Big data paris 2015 - A Hybrid Platform, a Hybrid Team
Dataiku -  Big data paris 2015 - A Hybrid Platform, a Hybrid Team Dataiku -  Big data paris 2015 - A Hybrid Platform, a Hybrid Team
Dataiku - Big data paris 2015 - A Hybrid Platform, a Hybrid Team
Dataiku
 
An Architecture for Agile Machine Learning in Real-Time Applications
An Architecture for Agile Machine Learning in Real-Time ApplicationsAn Architecture for Agile Machine Learning in Real-Time Applications
An Architecture for Agile Machine Learning in Real-Time Applications
Johann Schleier-Smith
 
Data kitchen 7 agile steps - big data fest 9-18-2015
Data kitchen   7 agile steps - big data fest 9-18-2015Data kitchen   7 agile steps - big data fest 9-18-2015
Data kitchen 7 agile steps - big data fest 9-18-2015
DataKitchen
 
RightScale Webinar: Enterprise-Grade Cloud Cost Planning and Management
RightScale Webinar: Enterprise-Grade Cloud Cost Planning and ManagementRightScale Webinar: Enterprise-Grade Cloud Cost Planning and Management
RightScale Webinar: Enterprise-Grade Cloud Cost Planning and Management
RightScale
 
Embedding Data & Analytics With Looker
Embedding Data & Analytics With LookerEmbedding Data & Analytics With Looker
Embedding Data & Analytics With Looker
Looker
 
Real Time Business Platform by Ivan Novick from Pivotal
Real Time Business Platform by Ivan Novick from PivotalReal Time Business Platform by Ivan Novick from Pivotal
Real Time Business Platform by Ivan Novick from Pivotal
VMware Tanzu Korea
 
The paradox of big data - dataiku / oxalide APEROTECH
The paradox of big data - dataiku / oxalide APEROTECHThe paradox of big data - dataiku / oxalide APEROTECH
The paradox of big data - dataiku / oxalide APEROTECH
Dataiku
 
Big Data Day LA 2016/ Big Data Track - Rapid Analytics @ Netflix LA (Updated ...
Big Data Day LA 2016/ Big Data Track - Rapid Analytics @ Netflix LA (Updated ...Big Data Day LA 2016/ Big Data Track - Rapid Analytics @ Netflix LA (Updated ...
Big Data Day LA 2016/ Big Data Track - Rapid Analytics @ Netflix LA (Updated ...
Data Con LA
 
Zero Downtime App Deployment using Hadoop
Zero Downtime App Deployment using HadoopZero Downtime App Deployment using Hadoop
Zero Downtime App Deployment using Hadoop
DataWorks Summit/Hadoop Summit
 
Spark and the Enterprise by Tony Baer
Spark and the Enterprise by Tony BaerSpark and the Enterprise by Tony Baer
Spark and the Enterprise by Tony Baer
Spark Summit
 
Eric Andersen Keynote
Eric Andersen KeynoteEric Andersen Keynote
Eric Andersen Keynote
Data Con LA
 
Big data prototyping in AWS cloud
Big data prototyping in AWS cloudBig data prototyping in AWS cloud
Big data prototyping in AWS cloud
Samuel Yee
 
Smart App@Pivotal by Dat Tran
Smart App@Pivotal by Dat TranSmart App@Pivotal by Dat Tran
Smart App@Pivotal by Dat Tran
VMware Tanzu Korea
 
Industrial Data Science
Industrial Data ScienceIndustrial Data Science
Industrial Data Science
Niko Vuokko
 
Understanding DataOps and Its Impact on Application Quality
Understanding DataOps and Its Impact on Application QualityUnderstanding DataOps and Its Impact on Application Quality
Understanding DataOps and Its Impact on Application Quality
DevOps.com
 
Effective Cost Management for Amazon EMR
Effective Cost Management for Amazon EMREffective Cost Management for Amazon EMR
Effective Cost Management for Amazon EMR
DevOps.com
 
Measuring Data Quality with DataOps
Measuring Data Quality with DataOpsMeasuring Data Quality with DataOps
Measuring Data Quality with DataOps
Steven Ensslen
 
Real time analytics @ netflix
Real time analytics @ netflixReal time analytics @ netflix
Real time analytics @ netflix
Cody Rioux
 
H2O World - Self Guiding Applications with Venkatesh Yadav
H2O World - Self Guiding Applications with Venkatesh YadavH2O World - Self Guiding Applications with Venkatesh Yadav
H2O World - Self Guiding Applications with Venkatesh Yadav
Sri Ambati
 
Real time machine learning
Real time machine learningReal time machine learning
Real time machine learning
Vinoth Kannan
 
Dataiku - Big data paris 2015 - A Hybrid Platform, a Hybrid Team
Dataiku -  Big data paris 2015 - A Hybrid Platform, a Hybrid Team Dataiku -  Big data paris 2015 - A Hybrid Platform, a Hybrid Team
Dataiku - Big data paris 2015 - A Hybrid Platform, a Hybrid Team
Dataiku
 
An Architecture for Agile Machine Learning in Real-Time Applications
An Architecture for Agile Machine Learning in Real-Time ApplicationsAn Architecture for Agile Machine Learning in Real-Time Applications
An Architecture for Agile Machine Learning in Real-Time Applications
Johann Schleier-Smith
 
Data kitchen 7 agile steps - big data fest 9-18-2015
Data kitchen   7 agile steps - big data fest 9-18-2015Data kitchen   7 agile steps - big data fest 9-18-2015
Data kitchen 7 agile steps - big data fest 9-18-2015
DataKitchen
 
RightScale Webinar: Enterprise-Grade Cloud Cost Planning and Management
RightScale Webinar: Enterprise-Grade Cloud Cost Planning and ManagementRightScale Webinar: Enterprise-Grade Cloud Cost Planning and Management
RightScale Webinar: Enterprise-Grade Cloud Cost Planning and Management
RightScale
 
Embedding Data & Analytics With Looker
Embedding Data & Analytics With LookerEmbedding Data & Analytics With Looker
Embedding Data & Analytics With Looker
Looker
 
Real Time Business Platform by Ivan Novick from Pivotal
Real Time Business Platform by Ivan Novick from PivotalReal Time Business Platform by Ivan Novick from Pivotal
Real Time Business Platform by Ivan Novick from Pivotal
VMware Tanzu Korea
 
The paradox of big data - dataiku / oxalide APEROTECH
The paradox of big data - dataiku / oxalide APEROTECHThe paradox of big data - dataiku / oxalide APEROTECH
The paradox of big data - dataiku / oxalide APEROTECH
Dataiku
 
Big Data Day LA 2016/ Big Data Track - Rapid Analytics @ Netflix LA (Updated ...
Big Data Day LA 2016/ Big Data Track - Rapid Analytics @ Netflix LA (Updated ...Big Data Day LA 2016/ Big Data Track - Rapid Analytics @ Netflix LA (Updated ...
Big Data Day LA 2016/ Big Data Track - Rapid Analytics @ Netflix LA (Updated ...
Data Con LA
 
Spark and the Enterprise by Tony Baer
Spark and the Enterprise by Tony BaerSpark and the Enterprise by Tony Baer
Spark and the Enterprise by Tony Baer
Spark Summit
 
Eric Andersen Keynote
Eric Andersen KeynoteEric Andersen Keynote
Eric Andersen Keynote
Data Con LA
 
Big data prototyping in AWS cloud
Big data prototyping in AWS cloudBig data prototyping in AWS cloud
Big data prototyping in AWS cloud
Samuel Yee
 

Viewers also liked (20)

Predicting Retail KPIs using Magento & Machine Learning
Predicting Retail KPIs using Magento & Machine LearningPredicting Retail KPIs using Magento & Machine Learning
Predicting Retail KPIs using Magento & Machine Learning
Rud Boruah
 
A Spark Framework For < $100, < 1 Hour, Accurate Personalized DNA Analy...
A Spark Framework For < $100, < 1 Hour, Accurate Personalized DNA Analy...A Spark Framework For < $100, < 1 Hour, Accurate Personalized DNA Analy...
A Spark Framework For < $100, < 1 Hour, Accurate Personalized DNA Analy...
Spark Summit
 
A Graph-Based Method For Cross-Entity Threat Detection
 A Graph-Based Method For Cross-Entity Threat Detection A Graph-Based Method For Cross-Entity Threat Detection
A Graph-Based Method For Cross-Entity Threat Detection
Jen Aman
 
Solving The N+1 Problem In Personalized Genomics
Solving The N+1 Problem In Personalized GenomicsSolving The N+1 Problem In Personalized Genomics
Solving The N+1 Problem In Personalized Genomics
Spark Summit
 
Spark Summit EU talk by Erwin Datema and Roeland van Ham
Spark Summit EU talk by Erwin Datema and Roeland van HamSpark Summit EU talk by Erwin Datema and Roeland van Ham
Spark Summit EU talk by Erwin Datema and Roeland van Ham
Spark Summit
 
From MapReduce to Apache Spark
From MapReduce to Apache SparkFrom MapReduce to Apache Spark
From MapReduce to Apache Spark
Jen Aman
 
Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...
Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...
Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...
Jen Aman
 
Yggdrasil: Faster Decision Trees Using Column Partitioning In Spark
Yggdrasil: Faster Decision Trees Using Column Partitioning In SparkYggdrasil: Faster Decision Trees Using Column Partitioning In Spark
Yggdrasil: Faster Decision Trees Using Column Partitioning In Spark
Jen Aman
 
Finding Graph Isomorphisms In GraphX And GraphFrames
Finding Graph Isomorphisms In GraphX And GraphFramesFinding Graph Isomorphisms In GraphX And GraphFrames
Finding Graph Isomorphisms In GraphX And GraphFrames
Spark Summit
 
Time-Evolving Graph Processing On Commodity Clusters
Time-Evolving Graph Processing On Commodity ClustersTime-Evolving Graph Processing On Commodity Clusters
Time-Evolving Graph Processing On Commodity Clusters
Jen Aman
 
MmmooOgle: From Big Data to Decisions for Dairy Cows
MmmooOgle: From Big Data to Decisions for Dairy CowsMmmooOgle: From Big Data to Decisions for Dairy Cows
MmmooOgle: From Big Data to Decisions for Dairy Cows
Spark Summit
 
Accelerating Spark Genome Sequencing in Cloud—A Data Driven Approach, Case St...
Accelerating Spark Genome Sequencing in Cloud—A Data Driven Approach, Case St...Accelerating Spark Genome Sequencing in Cloud—A Data Driven Approach, Case St...
Accelerating Spark Genome Sequencing in Cloud—A Data Driven Approach, Case St...
Spark Summit
 
Huohua: A Distributed Time Series Analysis Framework For Spark
Huohua: A Distributed Time Series Analysis Framework For SparkHuohua: A Distributed Time Series Analysis Framework For Spark
Huohua: A Distributed Time Series Analysis Framework For Spark
Jen Aman
 
Finding Needles in Genomic Haystacks with “Wide” Random Forest: Spark Summit ...
Finding Needles in Genomic Haystacks with “Wide” Random Forest: Spark Summit ...Finding Needles in Genomic Haystacks with “Wide” Random Forest: Spark Summit ...
Finding Needles in Genomic Haystacks with “Wide” Random Forest: Spark Summit ...
Spark Summit
 
Validation of solid oral dosage form, tablet 1
Validation of solid oral dosage form, tablet 1Validation of solid oral dosage form, tablet 1
Validation of solid oral dosage form, tablet 1
Jamia Hamdard
 
GPU Computing With Apache Spark And Python
GPU Computing With Apache Spark And PythonGPU Computing With Apache Spark And Python
GPU Computing With Apache Spark And Python
Jen Aman
 
Recent Developments In SparkR For Advanced Analytics
Recent Developments In SparkR For Advanced AnalyticsRecent Developments In SparkR For Advanced Analytics
Recent Developments In SparkR For Advanced Analytics
Databricks
 
Spark And Cassandra: 2 Fast, 2 Furious
Spark And Cassandra: 2 Fast, 2 FuriousSpark And Cassandra: 2 Fast, 2 Furious
Spark And Cassandra: 2 Fast, 2 Furious
Jen Aman
 
Re-Architecting Spark For Performance Understandability
Re-Architecting Spark For Performance UnderstandabilityRe-Architecting Spark For Performance Understandability
Re-Architecting Spark For Performance Understandability
Jen Aman
 
Spark on Mesos
Spark on MesosSpark on Mesos
Spark on Mesos
Jen Aman
 
Predicting Retail KPIs using Magento & Machine Learning
Predicting Retail KPIs using Magento & Machine LearningPredicting Retail KPIs using Magento & Machine Learning
Predicting Retail KPIs using Magento & Machine Learning
Rud Boruah
 
A Spark Framework For < $100, < 1 Hour, Accurate Personalized DNA Analy...
A Spark Framework For < $100, < 1 Hour, Accurate Personalized DNA Analy...A Spark Framework For < $100, < 1 Hour, Accurate Personalized DNA Analy...
A Spark Framework For < $100, < 1 Hour, Accurate Personalized DNA Analy...
Spark Summit
 
A Graph-Based Method For Cross-Entity Threat Detection
 A Graph-Based Method For Cross-Entity Threat Detection A Graph-Based Method For Cross-Entity Threat Detection
A Graph-Based Method For Cross-Entity Threat Detection
Jen Aman
 
Solving The N+1 Problem In Personalized Genomics
Solving The N+1 Problem In Personalized GenomicsSolving The N+1 Problem In Personalized Genomics
Solving The N+1 Problem In Personalized Genomics
Spark Summit
 
Spark Summit EU talk by Erwin Datema and Roeland van Ham
Spark Summit EU talk by Erwin Datema and Roeland van HamSpark Summit EU talk by Erwin Datema and Roeland van Ham
Spark Summit EU talk by Erwin Datema and Roeland van Ham
Spark Summit
 
From MapReduce to Apache Spark
From MapReduce to Apache SparkFrom MapReduce to Apache Spark
From MapReduce to Apache Spark
Jen Aman
 
Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...
Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...
Massive Simulations In Spark: Distributed Monte Carlo For Global Health Forec...
Jen Aman
 
Yggdrasil: Faster Decision Trees Using Column Partitioning In Spark
Yggdrasil: Faster Decision Trees Using Column Partitioning In SparkYggdrasil: Faster Decision Trees Using Column Partitioning In Spark
Yggdrasil: Faster Decision Trees Using Column Partitioning In Spark
Jen Aman
 
Finding Graph Isomorphisms In GraphX And GraphFrames
Finding Graph Isomorphisms In GraphX And GraphFramesFinding Graph Isomorphisms In GraphX And GraphFrames
Finding Graph Isomorphisms In GraphX And GraphFrames
Spark Summit
 
Time-Evolving Graph Processing On Commodity Clusters
Time-Evolving Graph Processing On Commodity ClustersTime-Evolving Graph Processing On Commodity Clusters
Time-Evolving Graph Processing On Commodity Clusters
Jen Aman
 
MmmooOgle: From Big Data to Decisions for Dairy Cows
MmmooOgle: From Big Data to Decisions for Dairy CowsMmmooOgle: From Big Data to Decisions for Dairy Cows
MmmooOgle: From Big Data to Decisions for Dairy Cows
Spark Summit
 
Accelerating Spark Genome Sequencing in Cloud—A Data Driven Approach, Case St...
Accelerating Spark Genome Sequencing in Cloud—A Data Driven Approach, Case St...Accelerating Spark Genome Sequencing in Cloud—A Data Driven Approach, Case St...
Accelerating Spark Genome Sequencing in Cloud—A Data Driven Approach, Case St...
Spark Summit
 
Huohua: A Distributed Time Series Analysis Framework For Spark
Huohua: A Distributed Time Series Analysis Framework For SparkHuohua: A Distributed Time Series Analysis Framework For Spark
Huohua: A Distributed Time Series Analysis Framework For Spark
Jen Aman
 
Finding Needles in Genomic Haystacks with “Wide” Random Forest: Spark Summit ...
Finding Needles in Genomic Haystacks with “Wide” Random Forest: Spark Summit ...Finding Needles in Genomic Haystacks with “Wide” Random Forest: Spark Summit ...
Finding Needles in Genomic Haystacks with “Wide” Random Forest: Spark Summit ...
Spark Summit
 
Validation of solid oral dosage form, tablet 1
Validation of solid oral dosage form, tablet 1Validation of solid oral dosage form, tablet 1
Validation of solid oral dosage form, tablet 1
Jamia Hamdard
 
GPU Computing With Apache Spark And Python
GPU Computing With Apache Spark And PythonGPU Computing With Apache Spark And Python
GPU Computing With Apache Spark And Python
Jen Aman
 
Recent Developments In SparkR For Advanced Analytics
Recent Developments In SparkR For Advanced AnalyticsRecent Developments In SparkR For Advanced Analytics
Recent Developments In SparkR For Advanced Analytics
Databricks
 
Spark And Cassandra: 2 Fast, 2 Furious
Spark And Cassandra: 2 Fast, 2 FuriousSpark And Cassandra: 2 Fast, 2 Furious
Spark And Cassandra: 2 Fast, 2 Furious
Jen Aman
 
Re-Architecting Spark For Performance Understandability
Re-Architecting Spark For Performance UnderstandabilityRe-Architecting Spark For Performance Understandability
Re-Architecting Spark For Performance Understandability
Jen Aman
 
Spark on Mesos
Spark on MesosSpark on Mesos
Spark on Mesos
Jen Aman
 
Ad

Similar to Utilizing Human Data Validation For KPI Analysis And Machine Learning (20)

Measuring and improving customer experience with journey analytics
Measuring and improving customer experience with journey analyticsMeasuring and improving customer experience with journey analytics
Measuring and improving customer experience with journey analytics
Angie Hsu
 
Share and Tell Stanford 2016
Share and Tell Stanford 2016Share and Tell Stanford 2016
Share and Tell Stanford 2016
Stanford University
 
A b-testing-101
A b-testing-101A b-testing-101
A b-testing-101
Madhumita Mantri
 
Usalytics.pitch.v3.1
Usalytics.pitch.v3.1Usalytics.pitch.v3.1
Usalytics.pitch.v3.1
Alexey Vorobiev
 
Emetrics - Oct 19 2011 - New York - X channel optimisation
Emetrics - Oct 19 2011 - New York - X channel optimisationEmetrics - Oct 19 2011 - New York - X channel optimisation
Emetrics - Oct 19 2011 - New York - X channel optimisation
Craig Sullivan
 
Anatomy of Relevance - From Data to Action: Presented by Saïd Radhouani, Yell...
Anatomy of Relevance - From Data to Action: Presented by Saïd Radhouani, Yell...Anatomy of Relevance - From Data to Action: Presented by Saïd Radhouani, Yell...
Anatomy of Relevance - From Data to Action: Presented by Saïd Radhouani, Yell...
Lucidworks
 
Anatomy of Search Relevance: From Data To Action
Anatomy of Search Relevance: From Data To ActionAnatomy of Search Relevance: From Data To Action
Anatomy of Search Relevance: From Data To Action
Saïd Radhouani
 
Pricing Pitfalls...and How to Counter Them
Pricing Pitfalls...and How to Counter ThemPricing Pitfalls...and How to Counter Them
Pricing Pitfalls...and How to Counter Them
Gus Prestera
 
Trends in testing 2015
Trends in testing 2015 Trends in testing 2015
Trends in testing 2015
Brijesh Deb
 
A/B Testing Best Practices - Do's and Don'ts
A/B Testing Best Practices - Do's and Don'tsA/B Testing Best Practices - Do's and Don'ts
A/B Testing Best Practices - Do's and Don'ts
Ramkumar Ravichandran
 
Model Factory at ING Bank
Model Factory at ING BankModel Factory at ING Bank
Model Factory at ING Bank
DataWorks Summit
 
SiriusDecisions Explores the Need for Demand Orchestration
SiriusDecisions Explores the Need for Demand OrchestrationSiriusDecisions Explores the Need for Demand Orchestration
SiriusDecisions Explores the Need for Demand Orchestration
Integrate
 
Why is Data Science still not a mainstream in corporations - Sasa Radovanovic
Why is Data Science still not a mainstream in corporations - Sasa RadovanovicWhy is Data Science still not a mainstream in corporations - Sasa Radovanovic
Why is Data Science still not a mainstream in corporations - Sasa Radovanovic
Institute of Contemporary Sciences
 
An introduction to the it recruitment - Aditya Tiwari
An introduction to the it recruitment - Aditya TiwariAn introduction to the it recruitment - Aditya Tiwari
An introduction to the it recruitment - Aditya Tiwari
Aaditya Tiwari
 
The ProPricer Proven Performance
The ProPricer Proven PerformanceThe ProPricer Proven Performance
The ProPricer Proven Performance
Denni Griffith
 
Roundtable: Best Practices - Quality Assurance & Analytics
Roundtable: Best Practices - Quality Assurance & AnalyticsRoundtable: Best Practices - Quality Assurance & Analytics
Roundtable: Best Practices - Quality Assurance & Analytics
Sheri Greenhaus
 
The benefits of outsourcing the best online survey company
The benefits of outsourcing the best online survey companyThe benefits of outsourcing the best online survey company
The benefits of outsourcing the best online survey company
Vinay Londhe
 
User Research: The Superpower Behind Experimentation Programs | VWO Webinars
User Research: The Superpower Behind Experimentation Programs | VWO WebinarsUser Research: The Superpower Behind Experimentation Programs | VWO Webinars
User Research: The Superpower Behind Experimentation Programs | VWO Webinars
VWO
 
Lean startup, customer development, and the business model canvas
Lean startup, customer development, and the business model canvasLean startup, customer development, and the business model canvas
Lean startup, customer development, and the business model canvas
gistinitiative
 
LMS process a ReLook (Chapter-2)
LMS process a ReLook (Chapter-2)LMS process a ReLook (Chapter-2)
LMS process a ReLook (Chapter-2)
Romi Bhattacharjee
 
Measuring and improving customer experience with journey analytics
Measuring and improving customer experience with journey analyticsMeasuring and improving customer experience with journey analytics
Measuring and improving customer experience with journey analytics
Angie Hsu
 
Emetrics - Oct 19 2011 - New York - X channel optimisation
Emetrics - Oct 19 2011 - New York - X channel optimisationEmetrics - Oct 19 2011 - New York - X channel optimisation
Emetrics - Oct 19 2011 - New York - X channel optimisation
Craig Sullivan
 
Anatomy of Relevance - From Data to Action: Presented by Saïd Radhouani, Yell...
Anatomy of Relevance - From Data to Action: Presented by Saïd Radhouani, Yell...Anatomy of Relevance - From Data to Action: Presented by Saïd Radhouani, Yell...
Anatomy of Relevance - From Data to Action: Presented by Saïd Radhouani, Yell...
Lucidworks
 
Anatomy of Search Relevance: From Data To Action
Anatomy of Search Relevance: From Data To ActionAnatomy of Search Relevance: From Data To Action
Anatomy of Search Relevance: From Data To Action
Saïd Radhouani
 
Pricing Pitfalls...and How to Counter Them
Pricing Pitfalls...and How to Counter ThemPricing Pitfalls...and How to Counter Them
Pricing Pitfalls...and How to Counter Them
Gus Prestera
 
Trends in testing 2015
Trends in testing 2015 Trends in testing 2015
Trends in testing 2015
Brijesh Deb
 
A/B Testing Best Practices - Do's and Don'ts
A/B Testing Best Practices - Do's and Don'tsA/B Testing Best Practices - Do's and Don'ts
A/B Testing Best Practices - Do's and Don'ts
Ramkumar Ravichandran
 
SiriusDecisions Explores the Need for Demand Orchestration
SiriusDecisions Explores the Need for Demand OrchestrationSiriusDecisions Explores the Need for Demand Orchestration
SiriusDecisions Explores the Need for Demand Orchestration
Integrate
 
Why is Data Science still not a mainstream in corporations - Sasa Radovanovic
Why is Data Science still not a mainstream in corporations - Sasa RadovanovicWhy is Data Science still not a mainstream in corporations - Sasa Radovanovic
Why is Data Science still not a mainstream in corporations - Sasa Radovanovic
Institute of Contemporary Sciences
 
An introduction to the it recruitment - Aditya Tiwari
An introduction to the it recruitment - Aditya TiwariAn introduction to the it recruitment - Aditya Tiwari
An introduction to the it recruitment - Aditya Tiwari
Aaditya Tiwari
 
The ProPricer Proven Performance
The ProPricer Proven PerformanceThe ProPricer Proven Performance
The ProPricer Proven Performance
Denni Griffith
 
Roundtable: Best Practices - Quality Assurance & Analytics
Roundtable: Best Practices - Quality Assurance & AnalyticsRoundtable: Best Practices - Quality Assurance & Analytics
Roundtable: Best Practices - Quality Assurance & Analytics
Sheri Greenhaus
 
The benefits of outsourcing the best online survey company
The benefits of outsourcing the best online survey companyThe benefits of outsourcing the best online survey company
The benefits of outsourcing the best online survey company
Vinay Londhe
 
User Research: The Superpower Behind Experimentation Programs | VWO Webinars
User Research: The Superpower Behind Experimentation Programs | VWO WebinarsUser Research: The Superpower Behind Experimentation Programs | VWO Webinars
User Research: The Superpower Behind Experimentation Programs | VWO Webinars
VWO
 
Lean startup, customer development, and the business model canvas
Lean startup, customer development, and the business model canvasLean startup, customer development, and the business model canvas
Lean startup, customer development, and the business model canvas
gistinitiative
 
LMS process a ReLook (Chapter-2)
LMS process a ReLook (Chapter-2)LMS process a ReLook (Chapter-2)
LMS process a ReLook (Chapter-2)
Romi Bhattacharjee
 
Ad

More from Jen Aman (20)

Deep Learning and Streaming in Apache Spark 2.x with Matei Zaharia
Deep Learning and Streaming in Apache Spark 2.x with Matei ZahariaDeep Learning and Streaming in Apache Spark 2.x with Matei Zaharia
Deep Learning and Streaming in Apache Spark 2.x with Matei Zaharia
Jen Aman
 
Snorkel: Dark Data and Machine Learning with Christopher Ré
Snorkel: Dark Data and Machine Learning with Christopher RéSnorkel: Dark Data and Machine Learning with Christopher Ré
Snorkel: Dark Data and Machine Learning with Christopher Ré
Jen Aman
 
Deep Learning on Apache® Spark™: Workflows and Best Practices
Deep Learning on Apache® Spark™: Workflows and Best PracticesDeep Learning on Apache® Spark™: Workflows and Best Practices
Deep Learning on Apache® Spark™: Workflows and Best Practices
Jen Aman
 
Deep Learning on Apache® Spark™ : Workflows and Best Practices
Deep Learning on Apache® Spark™ : Workflows and Best PracticesDeep Learning on Apache® Spark™ : Workflows and Best Practices
Deep Learning on Apache® Spark™ : Workflows and Best Practices
Jen Aman
 
RISELab:Enabling Intelligent Real-Time Decisions
RISELab:Enabling Intelligent Real-Time DecisionsRISELab:Enabling Intelligent Real-Time Decisions
RISELab:Enabling Intelligent Real-Time Decisions
Jen Aman
 
Spatial Analysis On Histological Images Using Spark
Spatial Analysis On Histological Images Using SparkSpatial Analysis On Histological Images Using Spark
Spatial Analysis On Histological Images Using Spark
Jen Aman
 
Deploying Accelerators At Datacenter Scale Using Spark
Deploying Accelerators At Datacenter Scale Using SparkDeploying Accelerators At Datacenter Scale Using Spark
Deploying Accelerators At Datacenter Scale Using Spark
Jen Aman
 
Re-Architecting Spark For Performance Understandability
Re-Architecting Spark For Performance UnderstandabilityRe-Architecting Spark For Performance Understandability
Re-Architecting Spark For Performance Understandability
Jen Aman
 
Low Latency Execution For Apache Spark
Low Latency Execution For Apache SparkLow Latency Execution For Apache Spark
Low Latency Execution For Apache Spark
Jen Aman
 
Efficient State Management With Spark 2.0 And Scale-Out Databases
Efficient State Management With Spark 2.0 And Scale-Out DatabasesEfficient State Management With Spark 2.0 And Scale-Out Databases
Efficient State Management With Spark 2.0 And Scale-Out Databases
Jen Aman
 
Livy: A REST Web Service For Apache Spark
Livy: A REST Web Service For Apache SparkLivy: A REST Web Service For Apache Spark
Livy: A REST Web Service For Apache Spark
Jen Aman
 
Building Custom Machine Learning Algorithms With Apache SystemML
Building Custom Machine Learning Algorithms With Apache SystemMLBuilding Custom Machine Learning Algorithms With Apache SystemML
Building Custom Machine Learning Algorithms With Apache SystemML
Jen Aman
 
Elasticsearch And Apache Lucene For Apache Spark And MLlib
Elasticsearch And Apache Lucene For Apache Spark And MLlibElasticsearch And Apache Lucene For Apache Spark And MLlib
Elasticsearch And Apache Lucene For Apache Spark And MLlib
Jen Aman
 
Spark at Bloomberg: Dynamically Composable Analytics
Spark at Bloomberg:  Dynamically Composable Analytics Spark at Bloomberg:  Dynamically Composable Analytics
Spark at Bloomberg: Dynamically Composable Analytics
Jen Aman
 
Spark Uber Development Kit
Spark Uber Development KitSpark Uber Development Kit
Spark Uber Development Kit
Jen Aman
 
EclairJS = Node.Js + Apache Spark
EclairJS = Node.Js + Apache SparkEclairJS = Node.Js + Apache Spark
EclairJS = Node.Js + Apache Spark
Jen Aman
 
Spark: Interactive To Production
Spark: Interactive To ProductionSpark: Interactive To Production
Spark: Interactive To Production
Jen Aman
 
High-Performance Python On Spark
High-Performance Python On SparkHigh-Performance Python On Spark
High-Performance Python On Spark
Jen Aman
 
Scalable Deep Learning Platform On Spark In Baidu
Scalable Deep Learning Platform On Spark In BaiduScalable Deep Learning Platform On Spark In Baidu
Scalable Deep Learning Platform On Spark In Baidu
Jen Aman
 
Scaling Machine Learning To Billions Of Parameters
Scaling Machine Learning To Billions Of ParametersScaling Machine Learning To Billions Of Parameters
Scaling Machine Learning To Billions Of Parameters
Jen Aman
 
Deep Learning and Streaming in Apache Spark 2.x with Matei Zaharia
Deep Learning and Streaming in Apache Spark 2.x with Matei ZahariaDeep Learning and Streaming in Apache Spark 2.x with Matei Zaharia
Deep Learning and Streaming in Apache Spark 2.x with Matei Zaharia
Jen Aman
 
Snorkel: Dark Data and Machine Learning with Christopher Ré
Snorkel: Dark Data and Machine Learning with Christopher RéSnorkel: Dark Data and Machine Learning with Christopher Ré
Snorkel: Dark Data and Machine Learning with Christopher Ré
Jen Aman
 
Deep Learning on Apache® Spark™: Workflows and Best Practices
Deep Learning on Apache® Spark™: Workflows and Best PracticesDeep Learning on Apache® Spark™: Workflows and Best Practices
Deep Learning on Apache® Spark™: Workflows and Best Practices
Jen Aman
 
Deep Learning on Apache® Spark™ : Workflows and Best Practices
Deep Learning on Apache® Spark™ : Workflows and Best PracticesDeep Learning on Apache® Spark™ : Workflows and Best Practices
Deep Learning on Apache® Spark™ : Workflows and Best Practices
Jen Aman
 
RISELab:Enabling Intelligent Real-Time Decisions
RISELab:Enabling Intelligent Real-Time DecisionsRISELab:Enabling Intelligent Real-Time Decisions
RISELab:Enabling Intelligent Real-Time Decisions
Jen Aman
 
Spatial Analysis On Histological Images Using Spark
Spatial Analysis On Histological Images Using SparkSpatial Analysis On Histological Images Using Spark
Spatial Analysis On Histological Images Using Spark
Jen Aman
 
Deploying Accelerators At Datacenter Scale Using Spark
Deploying Accelerators At Datacenter Scale Using SparkDeploying Accelerators At Datacenter Scale Using Spark
Deploying Accelerators At Datacenter Scale Using Spark
Jen Aman
 
Re-Architecting Spark For Performance Understandability
Re-Architecting Spark For Performance UnderstandabilityRe-Architecting Spark For Performance Understandability
Re-Architecting Spark For Performance Understandability
Jen Aman
 
Low Latency Execution For Apache Spark
Low Latency Execution For Apache SparkLow Latency Execution For Apache Spark
Low Latency Execution For Apache Spark
Jen Aman
 
Efficient State Management With Spark 2.0 And Scale-Out Databases
Efficient State Management With Spark 2.0 And Scale-Out DatabasesEfficient State Management With Spark 2.0 And Scale-Out Databases
Efficient State Management With Spark 2.0 And Scale-Out Databases
Jen Aman
 
Livy: A REST Web Service For Apache Spark
Livy: A REST Web Service For Apache SparkLivy: A REST Web Service For Apache Spark
Livy: A REST Web Service For Apache Spark
Jen Aman
 
Building Custom Machine Learning Algorithms With Apache SystemML
Building Custom Machine Learning Algorithms With Apache SystemMLBuilding Custom Machine Learning Algorithms With Apache SystemML
Building Custom Machine Learning Algorithms With Apache SystemML
Jen Aman
 
Elasticsearch And Apache Lucene For Apache Spark And MLlib
Elasticsearch And Apache Lucene For Apache Spark And MLlibElasticsearch And Apache Lucene For Apache Spark And MLlib
Elasticsearch And Apache Lucene For Apache Spark And MLlib
Jen Aman
 
Spark at Bloomberg: Dynamically Composable Analytics
Spark at Bloomberg:  Dynamically Composable Analytics Spark at Bloomberg:  Dynamically Composable Analytics
Spark at Bloomberg: Dynamically Composable Analytics
Jen Aman
 
Spark Uber Development Kit
Spark Uber Development KitSpark Uber Development Kit
Spark Uber Development Kit
Jen Aman
 
EclairJS = Node.Js + Apache Spark
EclairJS = Node.Js + Apache SparkEclairJS = Node.Js + Apache Spark
EclairJS = Node.Js + Apache Spark
Jen Aman
 
Spark: Interactive To Production
Spark: Interactive To ProductionSpark: Interactive To Production
Spark: Interactive To Production
Jen Aman
 
High-Performance Python On Spark
High-Performance Python On SparkHigh-Performance Python On Spark
High-Performance Python On Spark
Jen Aman
 
Scalable Deep Learning Platform On Spark In Baidu
Scalable Deep Learning Platform On Spark In BaiduScalable Deep Learning Platform On Spark In Baidu
Scalable Deep Learning Platform On Spark In Baidu
Jen Aman
 
Scaling Machine Learning To Billions Of Parameters
Scaling Machine Learning To Billions Of ParametersScaling Machine Learning To Billions Of Parameters
Scaling Machine Learning To Billions Of Parameters
Jen Aman
 

Recently uploaded (20)

Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia
Alexander Romero Arosquipa
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbbEDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
EDU533 DEMO.pptxccccvbnjjkoo jhgggggbbbb
JessaMaeEvangelista2
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
Conic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptxConic Sectionfaggavahabaayhahahahahs.pptx
Conic Sectionfaggavahabaayhahahahahs.pptx
taiwanesechetan
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
Flip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptxFlip flop presenation-Presented By Mubahir khan.pptx
Flip flop presenation-Presented By Mubahir khan.pptx
mubashirkhan45461
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 

Utilizing Human Data Validation For KPI Analysis And Machine Learning