SlideShare a Scribd company logo
1
In the fulfill of the requirement of the
Vibration of machines and structures
(MECH 6311)
Summer 15
A project report on
Vibration analysis of wheelchair
Submitted to
Dr. R Ganesan, Ph.D., Eng
By
Aniruddhsinh barad [7180217]
Bhoomirajsinh barad [7180225]
Viral kale [7677871]
Department of Mechanical and Industrial Engineering
Faculty of Engineering & Computer Science
2
Abstract
In this project, we concerned the vibration analysis of half portion of
the wheel chair. First we considered the different properties of the system and get
the values for all parameters from the real life examples. Then, we considered the
whole system as one equivalent SDOF model system and developed one
elementary model and we calculated the all the parameters and responses of
system. In the next step we analyzed magnification factor and transmissibility of
the system. At last the whole system is studied for multi degree of freedom system
for more complexity.
3
Index
1. Vibration model of wheel chair…………………………………4
2. SDOF system of wheelchair …………………………………….6
3. Two DOF system analysis……………………………………...11
4. MDOF system analysis…………………………………………13
5. References……………………………………………………….20
Figures
1. Wheelchair suspension system….………………………………4
2. SDOF suspension system………….…………………………….6
3. Two DOF suspension system……...………………………...…11
4. MDOF suspension system...……………………………………13
4
1. Vibration model of wheel chair:
Fig.1 Wheelchair suspension system
5
Contractions:
 Mh = mass of human
 Mf = mass of frame
 Mu = mass of tyre(wheel)
 Kc = stifness of tyre
 Kc = stifness of cushion
 Kf = stifness of frame suspension
 Cf = damping of frame
 Cc = damping of cushion
 v = velocity
 ξ = Damping Ratio
Data:
 Mh = 50 kg
 Mf = 13 kg
 Mu = 1.2 kg
 Ku = 56 ∗ 104 N
m
 Kc = 1.161 ∗ 104 N
m
 Kf = 104 N
m
 Kcf = 2.16 ∗ 104 N
m
 Cf = 150
Ns
m
 Cc = 115
Ns
m
 Ccf = 265
Ns
m
 v = 0.5
m
s
 ξ = 0(no damping)
y = 0.01sin(
2πvt
2.5
)
= 0.01sin(
2π ∗ 0.5 ∗ t
2.5
)
ω = (
2πv
2.5
)
6
= (
2π ∗ 0.5
2.5
)
∴ ω = 1.256 rad/sec
2. SDOF system of wheelchair:
Fig.2 SDOF suspension system
Kinetic energy:
T =
1
2
Muẋ 2
t+
1
2
Mhfẋ 2
t
=
1
2
(Mu + Mhf)ẋ 2
t
7
Meq = (Mu + Mhf)
= (1.2 + 63)
∴ Meq = 64.2 kg
Potential energy:
U =
1
2
Kuẋ2
t +
1
2
Kcfẋ 2
t
=
1
2
(Ku + Kcf)ẋ2
t
Keq = (Ku + Kcf)
Keq = 2.16 ∗ 104
N
m
Damping:
C = ∫ Ccf xt
2̇
Ceq = Ccf
Ceq = 265 Ns/m
Natural frequency:
ωn = √
Keq
Meq
= √
58.16 ∗ 104
64.2
ωn = 95.18 rad/sec
8
Frequency ratio:
r =
ω
ωn
=
1.256
95.18
r = 0.01319
Damped frequency:
ωd = ωn√1 − ξ2
ωn = 95.15 rad/sec
Critical Damping ratio:
Cc =2Meqωn
=2*64.2*95.18
Cc = 1.2 ∗ 104
Ns/m
Damping ratio:
ξ =
C
Cc
ξ =0.022
Amplitude of Vibration:
X
Y
= √
1 + (2ƺr)2
(1 − r2)2 + (2ƺr)2
9
Neglect damping,
X
Y
=
1
1 − r2
X
0.01
=
1
1 − 0.013192
X = xu=0.01000174 m
Magnification:
MF =
1
√(1 − r2)2 + (2ξr)2
MF = 1.00356
Case-1
For minimum magnification r = 1.5,
(𝑇𝑅) =
𝑋
𝑌
= √
1 + (2ƺ𝑟)2
(1 − 𝑟2)2 + (2ƺ𝑟)2
(TR) = 0.80
MFmin =
1
√(1 − r2)2 + (2ξr)2
MFmin = 0.799
Case-2
For maximum magnification ξ=0.022
MFmax =
1
2ξ√1 − ξ2
MFmax = 22.732
rmax = √1 − 2ξ2
rmax = 1.0009
10
Free undammed condition:
∴ ξ = 0, F(t) = 0
Meqẍ + Ceqẋ + Keqx = 0
Total response
x(t) =
ẋ(0)
ωn
sinωnt + x(0)cosωnt
x(t) =
ẋ(0)
95.18
sin95.18t + x(0)cos95.18t
For damped response:
F(t)=0
Meqẍ + Ceqẋ + Keqx = F(t)
Meqẍ + Ceqẋ + Keqx = 0
Total Response:
x(t) = e−ξωnt
(
ẋ(0) + ξωnx(0)
ωd
sinωdt + x(0)cosωdt)
x(t) = e−2.09t
(
ẋ(0) + 2.09x(0)
95.15
sin95.15t + x(0)cos95.15t)
For harmonic response:
Meqẍ + Ceqẋ + Keqx = F0sinωt
64.2ẍ + 265ẋ + 2.16 ∗ 104
x = F0sinωt
Total harmonic response
x(t) =
F0
K
(
sin(ωt − ∅)
√(1 − r2)2 + (2ξr)2
+ Xe−ξωnt
(sin(ωdt + ∅)
11
3. Two degree of freedom system [TDOF]:
Fig.3 Two DOF suspension system
Mu 𝑥 𝑢̈ = −Kuxu − Kcf(xu − xhf) − Ccf(𝑥 𝑢̇ − 𝑥ℎ𝑓)̇
Mhf 𝑥ℎ𝑓̈ = Kcf(xu − xhf) + Ccf(𝑥 𝑢̇ − 𝑥ℎ𝑓)̇
[
Mu 0
0 Mhf
] [
𝑥 𝑢̈
𝑥ℎ𝑓̈ ] + [
Ccf −Ccf
−Ccf Ccf
] ⌈
𝑥 𝑢̇
𝑥 𝑐𝑓̇ ⌉ + [
(Ku + Kcf) −Kcf
−Kcf Kcf
] ⌈
xu
xhf
⌉ = 0
[
xu
xhf
] = [
A1
A2
] 𝑠𝑖𝑛𝜔𝑡
⌈
𝑥 𝑢̇
𝑥 𝑐𝑓̇ ⌉ = 𝜔 [
A1
A2
] 𝑐𝑜𝑠𝜔𝑡
[
𝑥 𝑢̈
𝑥ℎ𝑓̈ ] = −𝜔2
[
A1
A2
] 𝑠𝑖𝑛𝜔𝑡
12
−𝜔2
𝑠𝑖𝑛𝜔𝑡 [
Mu 0
0 Mhf
] [
A1
A2
] + 𝜔𝑐𝑜𝑠𝜔𝑡 [
Ccf −Ccf
−Ccf Ccf
] ⌈
A1
A2
⌉
+ 𝑠𝑖𝑛𝜔𝑡 [
(Ku + Kcf) −Kcf
−Kcf Kcf
] ⌈
A1
A2
⌉ = [
0
0
]
−𝜔2
[
1.2 0
0 63
] [
A1
A2
] + 𝜔 [
265 −265
−265 265
] ⌈
A1
A2
⌉
+ [
581600 −21600
−21600 21600
] ⌈
A1
A2
⌉ = [
0
0
]
𝜔2
[−1.2𝜔2
+ 265𝜔 + 581600 −265𝜔 + 21600
−265𝜔 − 21600 −63𝜔2
+ 265𝜔 + 21600
] ⌈
A1
A2
⌉ = [
0
0
]
Solving the matrix we get the Eigen Values,
𝜆1 = 4.8468 ∗ 105
𝜆2 = 0.0033 ∗ 105
Using the Eigen values, we find out the Eigen vectors as below,
∅1 = {
0.999
−0.0007
}
∅2 = {
0.037
0.999
}
13
4. MDOF system of wheelchair:
Fig.4 MDOF suspension system
Kinetic energy,
T=
1
2
𝑀 𝑢 𝑋̇2
𝑢+
1
2
𝑀ℎ𝑓 𝑋̇2
ℎ𝑓+
1
2
𝐽 𝑜Ɵ̇ 2
Potential energy,
U=
1
2
𝐾 𝑢 𝑋2
𝑢+
1
2
𝐾 𝑐𝑓
2
(𝑋 𝑢 − (𝑋ℎ𝑓 − 𝑙1Ɵ))2
+
1
2
𝐾 𝑐𝑓
2
(𝑋 𝑢 − (𝑋ℎ𝑓 + 𝑙2Ɵ))2
14
Equation of motion,
1. 𝑞𝑖=𝑋 𝑢
𝑑
𝑑𝑡
(
𝜕𝑇
𝜕𝑋 𝑢
)= 𝑀 𝑢 𝑋̈ 𝑢
𝜕 𝑢
𝜕𝑥 𝑢
=𝐾 𝑢 𝑋 𝑢+
𝐾 𝑐𝑓
2
(𝑋 𝑢 − (𝑋ℎ𝑓 − 𝑙1Ɵ))+
𝐾 𝑐𝑓
2
(𝑋 𝑢 − (𝑋ℎ𝑓 + 𝑙2Ɵ))
𝑴 𝒖 𝑿̈ 𝒖+𝑿 𝒖(𝑲 𝒖 + 𝑲 𝒄𝒇)-𝑲 𝒄𝒇 𝑿 𝒉𝒇+
𝑲 𝒄𝒇
𝟐
Ɵ(𝒍 𝟏 − 𝒍 𝟐)=0
Now, 𝑞1̇ =𝑋ℎ𝑓
𝑑
𝑑𝑡
(
𝜕𝑇
𝜕𝑋̇ 𝐻𝐹
)= 𝑀ℎ𝑓 𝑋̈2
ℎ𝑓
𝜕𝑈
𝜕𝑋ℎ𝑓
=−
𝐾 𝑐𝑓
2
(𝑋 𝑢 − 𝑋ℎ𝑓 + 𝑙1Ɵ)- −
𝐾 𝑐𝑓
2
(𝑋 𝑢 − 𝑋ℎ𝑓 − 𝑙2Ɵ)
𝑴 𝒉𝒇 𝑿̈ 𝟐
𝒉𝒇 −
𝑲 𝒄𝒇
𝟐
(𝑿 𝒖 − 𝑿 𝒉𝒇 + 𝒍 𝟏Ɵ)- −
𝑲 𝒄𝒇
𝟐
(𝑿 𝒖 − 𝑿 𝒉𝒇 − 𝒍 𝟐Ɵ)=0
𝑓𝑜𝑟, 𝑞𝑖 =Ɵ
(
𝜕𝑇
𝜕𝜃
) = 𝐽˳𝜃̈
𝑑
𝑑𝑡
𝜕𝑈
𝜕𝜃
=
−𝐾𝑐𝐹
2
𝑙1(𝑥𝑢 − 𝑥ℎ𝐹 + 𝑙1𝜃) +
𝐾𝑐𝐹
2
𝑙2 (𝑥𝑢 − 𝑥ℎ𝐹 − 𝑙2𝜃)
𝑱˳𝜽̈ +
𝑲𝒄𝑭
𝟐
𝒙𝒖 (𝒍𝟐 − 𝒍𝟏) +
𝑲𝒄𝑭
𝟐
𝒙𝒉𝑭(𝒍𝟏 − 𝒍𝟐) −
𝑲𝒄𝑭
𝟐
(𝒍𝟏 𝟐
+ 𝒍𝟐 𝟐
)𝜽
[
𝑚 𝑢 0 0
0 𝑚ℎ𝑓 0
0 0 𝑗𝑜
] {
𝑥̈ 𝑢
𝑥̈ℎ𝑓
Ɵ̈
}+
[
𝑘 𝑢 + 𝑘 𝑐𝑓 −𝑘 𝑐𝑓
𝑘 𝑐𝑓(𝑙1−𝑙2)
2
−𝑘 𝑐𝑓 𝑘 𝑐𝑓
𝑘 𝑐𝑓(𝑙2−𝑙1)
2
𝑘 𝑐𝑓(𝑙1−𝑙2)
2
𝑘 𝑐𝑓(𝑙2−𝑙1)
2
−𝑘 𝑐𝑓(𝑙12+𝑙22)
2 ]
{
𝑋𝑢
𝑋ℎ𝑓
Ɵ
} = {
0
0
0
}
15
Now we take
{
𝑋𝑢
𝑋ℎ𝑓
Ɵ
} = {
𝐴𝑢
𝐴ℎ𝑓
Ɵℎ𝑓
} sinωt
-ω2
sin ωt[
𝑚 𝑢 0 0
0 𝑚ℎ𝑓 0
0 0 𝑗𝑜
] {
𝑋𝑢
𝑋ℎ𝑓
Ɵ
} +sin
ωt
[
𝑘 𝑢 + 𝑘 𝑐𝑓 −𝑘 𝑐𝑓
𝑘 𝑐𝑓(𝑙1−𝑙2)
2
−𝑘 𝑐𝑓 𝑘 𝑐𝑓
𝑘 𝑐𝑓(𝑙2−𝑙1)
2
𝑘 𝑐𝑓(𝑙1−𝑙2)
2
𝑘 𝑐𝑓(𝑙2−𝑙1)
2
−𝑘 𝑐𝑓(𝑙12+𝑙22)
2 ]
{
𝑋𝑢
𝑋ℎ𝑓
Ɵ
} = {
0
0
0
}
-ω2
[
1.2 0 0
0 63 0
0 0 0.5419
] {
𝑋𝑢
𝑋ℎ𝑓
Ɵ
} +
[
581600 −2.16 ∗ 104
0
−2.16 ∗ 104
2.16 ∗ 104
0
0 0 −111.48
] {
𝑋𝑢
𝑋ℎ𝑓
Ɵ
}={
0
0
0
}
Assume, ω2
=⅄
[
581600 − 1.2⅄ −2.16 ∗ 104
0
−2.16 ∗ 104
2.16 ∗ 104
− 63⅄ 0
0 0 −111.48 − 0.5419⅄
] {
𝑋𝑢
𝑋ℎ𝑓
Ɵ
}={
0
0
0
}
⅄=[
4.84679 0 0
0 0.00330115 0
0 0 −0.0205720
] 105
⅄1=4.84679*105
⅄2=0.00330115*105
16
⅄3=-0.0205720*105
𝜔3𝑛=0.0+45.3341i
𝜔1𝑛=696.19 𝑟𝑎𝑑
𝑠𝑒𝑐⁄
𝜔2𝑛=18.16 𝑟𝑎𝑑
𝑠𝑒𝑐⁄
𝜔3𝑛=45.35 𝑟𝑎𝑑
𝑠𝑒𝑐⁄
Eigen vectors,
∅1 = {
0.9999
−0.000707
0
}
∅2 = {
0.0371386
0.931012
0
}
∅3 = {
0
0
1.000
}
Modal matrix,
P=[
0.9999 0.0371386 0
−0.000707 0.9931012 0
0 0 1.000
]
𝑃 𝑇
=[
0.9999 −0.000707 0
0.0371386 0.9931012 0
0 0 1.000
]
17
Generalizes mass,
𝑃 𝑇
𝑀𝑃=[
1.2 0 0
0 62.9147 0
0 0 0.054190
]
Generalized stiffness,
𝑃 𝑇
𝐾𝑃=[
5.8163 0 0
0 0.2076911 0
0 0 −0.00111480
]
Amplitude ratio
Y=0.01,
ƺ=0.022
𝐹𝑜𝑟, 𝑟=
𝜔
𝜔 𝑛1
=1.8*10−3
𝑋
𝑌
=√
1+(2ƺ𝑟)2
(1−𝑟2)2+(2ƺ𝑟)2
𝑋
𝑌
=√
1+(2∗0.022∗1.8∗10−3)2
(1−1.8∗10−32
)
2
+(2∗0.022∗1.8∗10−3)2
X=0.01 m
𝐹𝑜𝑟, 𝑟=
𝜔
𝜔 𝑛2
=0.069
𝑋
𝑌
=√
1+(2ƺ𝑟)2
(1−𝑟2)2+(2ƺ𝑟)2
𝑋
𝑌
=√
1+(2∗0.022∗0.069)2
(1−0.0692)2+(2∗0.022∗0.069)2
X=0.01 m
18
Frequency ratio:
𝐹𝑜𝑟, 𝑟=
𝜔
𝜔 𝑛3
=0.027
Y=0.00989m
𝑋
𝑌
=√
1+(2ƺ𝑟)2
(1−𝑟2)2+(2ƺ𝑟)2
𝑋
𝑌
=√
1+(2∗0.022∗0.027)2
(1−0.0272)2+(2∗0.022∗0.027)2
X=0.01 m
Now we consider the force 𝑓0 sinωt
Where 𝑓0=500 N
F=[
0
𝑓0 sin ωt
0
]
F=[
0
500
0
] sin ωt
𝑃 𝑇
F=[
0.9999 −0.000707 0
0.0371386 0.9931012 0
0 0 1.000
] [
0
500
0
] sin ωt
𝑃 𝑇
F=[
18.569
499.65
0
] sin ωt
19
Assume
ƺ=0.05
𝑓𝑜𝑟 𝜔1𝑛=696.19 𝑟𝑎𝑑
𝑠𝑒𝑐⁄
𝑐 𝑐=1670.55 𝑁𝑆
𝑚⁄
C=83.54 𝑁𝑆
𝑚⁄
1.2𝒙̈ +83.54𝒙̇ +5.8163*𝟏𝟎 𝟓
𝒙=18.569 sin ωt
Total response,
𝑥(𝑡) = 𝑒−34.81𝑡
(
𝑥̇(0)+34.81𝑥(0)
695.32
𝑠𝑖𝑛695.32𝑡 + 𝑥(0)𝑐𝑜𝑠695.32𝑡) +
(3.19*105
sin(1.265𝑡 − 𝜙))
𝑓𝑜𝑟 𝜔12=18.16 𝑟𝑎𝑑
𝑠𝑒𝑐⁄
ƺ=0.05
𝑐 𝑐=2285.06 𝑁𝑆
𝑚⁄
C=114.25 𝑁𝑆
𝑚⁄
62.9147𝒙̈ +114.25𝒙̇ +0.2061*𝟏𝟎 𝟓
𝒙=499.65 sin ωt
𝑥(𝑡) = 𝑒−18.14𝑡
(
𝑥̇(0)+18.14𝑥(0)
18.14
𝑠𝑖𝑛18.14𝑡 + 𝑥(0)𝑐𝑜𝑠18.14𝑡) +
(0.024sin(1.265𝑡 − 𝜙))
𝑓𝑜𝑟 𝜔13=45.35 𝑟𝑎𝑑
𝑠𝑒𝑐⁄
ƺ=0.05
𝑐 𝑐=4.915 𝑁𝑆
𝑚⁄
20
C=0.2457 𝑁𝑆
𝑚⁄
0.5419𝒙̈ +0.2457𝒙̇ +0.001148*𝟏𝟎 𝟓
𝒙=0
𝑥(𝑡) = 𝑒−2.26𝑡
(
𝑥̇(0) + 2.26𝑥(0)
45.29
𝑠𝑖𝑛2.26𝑡 + 𝑥(0)𝑐𝑜𝑠2.26𝑡)
21
References:
5. http://www.rehab.research.va.gov/jour/11/483/pdf/akins.pdf
6. Damping characteristics of seat cushion materials for tractor ride comfort.
By (C.R.Mehta, V.K.Tiwari)

More Related Content

What's hot (17)

PDF
AERO390Report_Xiang
XIANG Gao
 
PDF
86202008
IJRAT
 
PDF
Solutions manual for engineering mechanics dynamics 13th edition by hibbeler
table3252
 
PPTX
An Introduction to Deep Learning with Apache MXNet (November 2017)
Julien SIMON
 
DOCX
Perhitunngan
Nadya Herida
 
PDF
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
Sohar Carr
 
PDF
Capítulo 15 engrenagens cônicas e sem-fim
Jhayson Carvalho
 
PDF
Capitulo 12
vimacive
 
PDF
Quantum Computing 101, Part 2 - Hello Entangled World
AaronTurner9
 
PDF
Quantum Computing 101, Part 1 - Hello Quantum World
AaronTurner9
 
PPT
Ch06 pt 2
Austin Wood
 
PDF
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
Sohar Carr
 
PPT
8389 ch06
Espirituanna
 
PDF
Ws004 motors calculations-240 v dc
Chad Kurdi, P.E.
 
PDF
MINI SLED CRASH PROJECT
Madhu Kandampadath
 
PDF
Ws003 motors calculations-3 phase 480v induction
Chad Kurdi, P.E.
 
PDF
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
cristhian cabrera
 
AERO390Report_Xiang
XIANG Gao
 
86202008
IJRAT
 
Solutions manual for engineering mechanics dynamics 13th edition by hibbeler
table3252
 
An Introduction to Deep Learning with Apache MXNet (November 2017)
Julien SIMON
 
Perhitunngan
Nadya Herida
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
Sohar Carr
 
Capítulo 15 engrenagens cônicas e sem-fim
Jhayson Carvalho
 
Capitulo 12
vimacive
 
Quantum Computing 101, Part 2 - Hello Entangled World
AaronTurner9
 
Quantum Computing 101, Part 1 - Hello Quantum World
AaronTurner9
 
Ch06 pt 2
Austin Wood
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
Sohar Carr
 
8389 ch06
Espirituanna
 
Ws004 motors calculations-240 v dc
Chad Kurdi, P.E.
 
MINI SLED CRASH PROJECT
Madhu Kandampadath
 
Ws003 motors calculations-3 phase 480v induction
Chad Kurdi, P.E.
 
Engineering circuit-analysis-solutions-7ed-hayt [upload by r1-lher
cristhian cabrera
 

Viewers also liked (20)

PDF
resume_ali_mckenzie
Ali McKenzie Beeson
 
PDF
Enigmas vieira da silva
FUNDAÇÃO EDP
 
PDF
Artigo - Feliz Dia do Trabalhador
Caput Consultoria
 
DOC
Contar elementos mesa
Mari
 
DOCX
Unidad educativa municipal oswaldo lombeyda
crisandy96
 
PDF
Aula 2 tipos textuais no webjornalismo
aulasdejornalismo
 
PDF
Ficha técnica tc 504
ScanSource Brasil
 
PDF
Carta dos "Sofredores da Rua"
Míriam Santini de Abreu
 
DOCX
Pensando sobre
Vinicius Abreu
 
DOC
Literatura 1ª série - 01
Alpha Colégio e Vestibulares
 
PDF
Como poupar água
Biblioteca Escolar Sobreira
 
PDF
Nome sujo na praça. O que fazer?
Eliane Metz
 
PDF
Informativo Julho
cristouberlandia
 
DOC
História renato - 3ºano - 01
Alpha Colégio e Vestibulares
 
PDF
O médico, o paciente e o processo
Eliane Metz
 
PPTX
A finalidade da vida humana
Fer Nanda
 
PPSX
Esta vida é uma loteria
Geraldoferre
 
PDF
Quatro passos para seu negócio
Billy Nascimento
 
PDF
Exercícios 2o.ano 2o.bim 1a.lei ohm resistores e potência
jucimarpeixoto
 
resume_ali_mckenzie
Ali McKenzie Beeson
 
Enigmas vieira da silva
FUNDAÇÃO EDP
 
Artigo - Feliz Dia do Trabalhador
Caput Consultoria
 
Contar elementos mesa
Mari
 
Unidad educativa municipal oswaldo lombeyda
crisandy96
 
Aula 2 tipos textuais no webjornalismo
aulasdejornalismo
 
Ficha técnica tc 504
ScanSource Brasil
 
Carta dos "Sofredores da Rua"
Míriam Santini de Abreu
 
Pensando sobre
Vinicius Abreu
 
Literatura 1ª série - 01
Alpha Colégio e Vestibulares
 
Como poupar água
Biblioteca Escolar Sobreira
 
Nome sujo na praça. O que fazer?
Eliane Metz
 
Informativo Julho
cristouberlandia
 
História renato - 3ºano - 01
Alpha Colégio e Vestibulares
 
O médico, o paciente e o processo
Eliane Metz
 
A finalidade da vida humana
Fer Nanda
 
Esta vida é uma loteria
Geraldoferre
 
Quatro passos para seu negócio
Billy Nascimento
 
Exercícios 2o.ano 2o.bim 1a.lei ohm resistores e potência
jucimarpeixoto
 
Ad

Similar to vibration of machines and structures (20)

PDF
Bazzucchi-Campolmi-Zatti
Filippo Campolmi
 
PDF
Ijetr021232
ER Publication.org
 
PPT
Dynamics of multiple degree of freedom linear systems
University of Glasgow
 
PDF
Tutorial_3_Solution_.pdf
ssuserfb9ae6
 
PDF
Libro mechanical vibration jm krodkiewski
Victor Martinez
 
PDF
Mechanical vibration by janusz krodkiewski
Rung Heo
 
PDF
Mechanical viberation
patel sandip
 
PDF
Mechanical vibration by janusz krodkiewski
nook_kick
 
PPTX
sdof-1211798306003307-8.pptx
SahilDhanvijay2
 
PPT
13200777.ppt
EpparapallySaiKrishn
 
PPT
13200777.ppt
EpparapallySaiKrishn
 
PDF
Graph for Coulomb damped oscillation
phanhung20
 
PPTX
Mechanical_vibration_basics_and_single_d.pptx
ponnaganti gopinadh chowdary
 
PDF
single degree of freedom systems forced vibrations
KESHAV
 
PPT
Approximate Methods
Teja Ande
 
PPTX
two degree of freddom system
Yash Patel
 
PPT
Ch 1-3.ppt
Rituparna Mitra
 
PPTX
Chapter5 two degree of freedom systems_All.pptx
yourhomietom
 
PPT
Dynamic response to harmonic excitation
University of Glasgow
 
Bazzucchi-Campolmi-Zatti
Filippo Campolmi
 
Ijetr021232
ER Publication.org
 
Dynamics of multiple degree of freedom linear systems
University of Glasgow
 
Tutorial_3_Solution_.pdf
ssuserfb9ae6
 
Libro mechanical vibration jm krodkiewski
Victor Martinez
 
Mechanical vibration by janusz krodkiewski
Rung Heo
 
Mechanical viberation
patel sandip
 
Mechanical vibration by janusz krodkiewski
nook_kick
 
sdof-1211798306003307-8.pptx
SahilDhanvijay2
 
13200777.ppt
EpparapallySaiKrishn
 
13200777.ppt
EpparapallySaiKrishn
 
Graph for Coulomb damped oscillation
phanhung20
 
Mechanical_vibration_basics_and_single_d.pptx
ponnaganti gopinadh chowdary
 
single degree of freedom systems forced vibrations
KESHAV
 
Approximate Methods
Teja Ande
 
two degree of freddom system
Yash Patel
 
Ch 1-3.ppt
Rituparna Mitra
 
Chapter5 two degree of freedom systems_All.pptx
yourhomietom
 
Dynamic response to harmonic excitation
University of Glasgow
 
Ad

vibration of machines and structures

  • 1. 1 In the fulfill of the requirement of the Vibration of machines and structures (MECH 6311) Summer 15 A project report on Vibration analysis of wheelchair Submitted to Dr. R Ganesan, Ph.D., Eng By Aniruddhsinh barad [7180217] Bhoomirajsinh barad [7180225] Viral kale [7677871] Department of Mechanical and Industrial Engineering Faculty of Engineering & Computer Science
  • 2. 2 Abstract In this project, we concerned the vibration analysis of half portion of the wheel chair. First we considered the different properties of the system and get the values for all parameters from the real life examples. Then, we considered the whole system as one equivalent SDOF model system and developed one elementary model and we calculated the all the parameters and responses of system. In the next step we analyzed magnification factor and transmissibility of the system. At last the whole system is studied for multi degree of freedom system for more complexity.
  • 3. 3 Index 1. Vibration model of wheel chair…………………………………4 2. SDOF system of wheelchair …………………………………….6 3. Two DOF system analysis……………………………………...11 4. MDOF system analysis…………………………………………13 5. References……………………………………………………….20 Figures 1. Wheelchair suspension system….………………………………4 2. SDOF suspension system………….…………………………….6 3. Two DOF suspension system……...………………………...…11 4. MDOF suspension system...……………………………………13
  • 4. 4 1. Vibration model of wheel chair: Fig.1 Wheelchair suspension system
  • 5. 5 Contractions:  Mh = mass of human  Mf = mass of frame  Mu = mass of tyre(wheel)  Kc = stifness of tyre  Kc = stifness of cushion  Kf = stifness of frame suspension  Cf = damping of frame  Cc = damping of cushion  v = velocity  ξ = Damping Ratio Data:  Mh = 50 kg  Mf = 13 kg  Mu = 1.2 kg  Ku = 56 ∗ 104 N m  Kc = 1.161 ∗ 104 N m  Kf = 104 N m  Kcf = 2.16 ∗ 104 N m  Cf = 150 Ns m  Cc = 115 Ns m  Ccf = 265 Ns m  v = 0.5 m s  ξ = 0(no damping) y = 0.01sin( 2πvt 2.5 ) = 0.01sin( 2π ∗ 0.5 ∗ t 2.5 ) ω = ( 2πv 2.5 )
  • 6. 6 = ( 2π ∗ 0.5 2.5 ) ∴ ω = 1.256 rad/sec 2. SDOF system of wheelchair: Fig.2 SDOF suspension system Kinetic energy: T = 1 2 Muẋ 2 t+ 1 2 Mhfẋ 2 t = 1 2 (Mu + Mhf)ẋ 2 t
  • 7. 7 Meq = (Mu + Mhf) = (1.2 + 63) ∴ Meq = 64.2 kg Potential energy: U = 1 2 Kuẋ2 t + 1 2 Kcfẋ 2 t = 1 2 (Ku + Kcf)ẋ2 t Keq = (Ku + Kcf) Keq = 2.16 ∗ 104 N m Damping: C = ∫ Ccf xt 2̇ Ceq = Ccf Ceq = 265 Ns/m Natural frequency: ωn = √ Keq Meq = √ 58.16 ∗ 104 64.2 ωn = 95.18 rad/sec
  • 8. 8 Frequency ratio: r = ω ωn = 1.256 95.18 r = 0.01319 Damped frequency: ωd = ωn√1 − ξ2 ωn = 95.15 rad/sec Critical Damping ratio: Cc =2Meqωn =2*64.2*95.18 Cc = 1.2 ∗ 104 Ns/m Damping ratio: ξ = C Cc ξ =0.022 Amplitude of Vibration: X Y = √ 1 + (2ƺr)2 (1 − r2)2 + (2ƺr)2
  • 9. 9 Neglect damping, X Y = 1 1 − r2 X 0.01 = 1 1 − 0.013192 X = xu=0.01000174 m Magnification: MF = 1 √(1 − r2)2 + (2ξr)2 MF = 1.00356 Case-1 For minimum magnification r = 1.5, (𝑇𝑅) = 𝑋 𝑌 = √ 1 + (2ƺ𝑟)2 (1 − 𝑟2)2 + (2ƺ𝑟)2 (TR) = 0.80 MFmin = 1 √(1 − r2)2 + (2ξr)2 MFmin = 0.799 Case-2 For maximum magnification ξ=0.022 MFmax = 1 2ξ√1 − ξ2 MFmax = 22.732 rmax = √1 − 2ξ2 rmax = 1.0009
  • 10. 10 Free undammed condition: ∴ ξ = 0, F(t) = 0 Meqẍ + Ceqẋ + Keqx = 0 Total response x(t) = ẋ(0) ωn sinωnt + x(0)cosωnt x(t) = ẋ(0) 95.18 sin95.18t + x(0)cos95.18t For damped response: F(t)=0 Meqẍ + Ceqẋ + Keqx = F(t) Meqẍ + Ceqẋ + Keqx = 0 Total Response: x(t) = e−ξωnt ( ẋ(0) + ξωnx(0) ωd sinωdt + x(0)cosωdt) x(t) = e−2.09t ( ẋ(0) + 2.09x(0) 95.15 sin95.15t + x(0)cos95.15t) For harmonic response: Meqẍ + Ceqẋ + Keqx = F0sinωt 64.2ẍ + 265ẋ + 2.16 ∗ 104 x = F0sinωt Total harmonic response x(t) = F0 K ( sin(ωt − ∅) √(1 − r2)2 + (2ξr)2 + Xe−ξωnt (sin(ωdt + ∅)
  • 11. 11 3. Two degree of freedom system [TDOF]: Fig.3 Two DOF suspension system Mu 𝑥 𝑢̈ = −Kuxu − Kcf(xu − xhf) − Ccf(𝑥 𝑢̇ − 𝑥ℎ𝑓)̇ Mhf 𝑥ℎ𝑓̈ = Kcf(xu − xhf) + Ccf(𝑥 𝑢̇ − 𝑥ℎ𝑓)̇ [ Mu 0 0 Mhf ] [ 𝑥 𝑢̈ 𝑥ℎ𝑓̈ ] + [ Ccf −Ccf −Ccf Ccf ] ⌈ 𝑥 𝑢̇ 𝑥 𝑐𝑓̇ ⌉ + [ (Ku + Kcf) −Kcf −Kcf Kcf ] ⌈ xu xhf ⌉ = 0 [ xu xhf ] = [ A1 A2 ] 𝑠𝑖𝑛𝜔𝑡 ⌈ 𝑥 𝑢̇ 𝑥 𝑐𝑓̇ ⌉ = 𝜔 [ A1 A2 ] 𝑐𝑜𝑠𝜔𝑡 [ 𝑥 𝑢̈ 𝑥ℎ𝑓̈ ] = −𝜔2 [ A1 A2 ] 𝑠𝑖𝑛𝜔𝑡
  • 12. 12 −𝜔2 𝑠𝑖𝑛𝜔𝑡 [ Mu 0 0 Mhf ] [ A1 A2 ] + 𝜔𝑐𝑜𝑠𝜔𝑡 [ Ccf −Ccf −Ccf Ccf ] ⌈ A1 A2 ⌉ + 𝑠𝑖𝑛𝜔𝑡 [ (Ku + Kcf) −Kcf −Kcf Kcf ] ⌈ A1 A2 ⌉ = [ 0 0 ] −𝜔2 [ 1.2 0 0 63 ] [ A1 A2 ] + 𝜔 [ 265 −265 −265 265 ] ⌈ A1 A2 ⌉ + [ 581600 −21600 −21600 21600 ] ⌈ A1 A2 ⌉ = [ 0 0 ] 𝜔2 [−1.2𝜔2 + 265𝜔 + 581600 −265𝜔 + 21600 −265𝜔 − 21600 −63𝜔2 + 265𝜔 + 21600 ] ⌈ A1 A2 ⌉ = [ 0 0 ] Solving the matrix we get the Eigen Values, 𝜆1 = 4.8468 ∗ 105 𝜆2 = 0.0033 ∗ 105 Using the Eigen values, we find out the Eigen vectors as below, ∅1 = { 0.999 −0.0007 } ∅2 = { 0.037 0.999 }
  • 13. 13 4. MDOF system of wheelchair: Fig.4 MDOF suspension system Kinetic energy, T= 1 2 𝑀 𝑢 𝑋̇2 𝑢+ 1 2 𝑀ℎ𝑓 𝑋̇2 ℎ𝑓+ 1 2 𝐽 𝑜Ɵ̇ 2 Potential energy, U= 1 2 𝐾 𝑢 𝑋2 𝑢+ 1 2 𝐾 𝑐𝑓 2 (𝑋 𝑢 − (𝑋ℎ𝑓 − 𝑙1Ɵ))2 + 1 2 𝐾 𝑐𝑓 2 (𝑋 𝑢 − (𝑋ℎ𝑓 + 𝑙2Ɵ))2
  • 14. 14 Equation of motion, 1. 𝑞𝑖=𝑋 𝑢 𝑑 𝑑𝑡 ( 𝜕𝑇 𝜕𝑋 𝑢 )= 𝑀 𝑢 𝑋̈ 𝑢 𝜕 𝑢 𝜕𝑥 𝑢 =𝐾 𝑢 𝑋 𝑢+ 𝐾 𝑐𝑓 2 (𝑋 𝑢 − (𝑋ℎ𝑓 − 𝑙1Ɵ))+ 𝐾 𝑐𝑓 2 (𝑋 𝑢 − (𝑋ℎ𝑓 + 𝑙2Ɵ)) 𝑴 𝒖 𝑿̈ 𝒖+𝑿 𝒖(𝑲 𝒖 + 𝑲 𝒄𝒇)-𝑲 𝒄𝒇 𝑿 𝒉𝒇+ 𝑲 𝒄𝒇 𝟐 Ɵ(𝒍 𝟏 − 𝒍 𝟐)=0 Now, 𝑞1̇ =𝑋ℎ𝑓 𝑑 𝑑𝑡 ( 𝜕𝑇 𝜕𝑋̇ 𝐻𝐹 )= 𝑀ℎ𝑓 𝑋̈2 ℎ𝑓 𝜕𝑈 𝜕𝑋ℎ𝑓 =− 𝐾 𝑐𝑓 2 (𝑋 𝑢 − 𝑋ℎ𝑓 + 𝑙1Ɵ)- − 𝐾 𝑐𝑓 2 (𝑋 𝑢 − 𝑋ℎ𝑓 − 𝑙2Ɵ) 𝑴 𝒉𝒇 𝑿̈ 𝟐 𝒉𝒇 − 𝑲 𝒄𝒇 𝟐 (𝑿 𝒖 − 𝑿 𝒉𝒇 + 𝒍 𝟏Ɵ)- − 𝑲 𝒄𝒇 𝟐 (𝑿 𝒖 − 𝑿 𝒉𝒇 − 𝒍 𝟐Ɵ)=0 𝑓𝑜𝑟, 𝑞𝑖 =Ɵ ( 𝜕𝑇 𝜕𝜃 ) = 𝐽˳𝜃̈ 𝑑 𝑑𝑡 𝜕𝑈 𝜕𝜃 = −𝐾𝑐𝐹 2 𝑙1(𝑥𝑢 − 𝑥ℎ𝐹 + 𝑙1𝜃) + 𝐾𝑐𝐹 2 𝑙2 (𝑥𝑢 − 𝑥ℎ𝐹 − 𝑙2𝜃) 𝑱˳𝜽̈ + 𝑲𝒄𝑭 𝟐 𝒙𝒖 (𝒍𝟐 − 𝒍𝟏) + 𝑲𝒄𝑭 𝟐 𝒙𝒉𝑭(𝒍𝟏 − 𝒍𝟐) − 𝑲𝒄𝑭 𝟐 (𝒍𝟏 𝟐 + 𝒍𝟐 𝟐 )𝜽 [ 𝑚 𝑢 0 0 0 𝑚ℎ𝑓 0 0 0 𝑗𝑜 ] { 𝑥̈ 𝑢 𝑥̈ℎ𝑓 Ɵ̈ }+ [ 𝑘 𝑢 + 𝑘 𝑐𝑓 −𝑘 𝑐𝑓 𝑘 𝑐𝑓(𝑙1−𝑙2) 2 −𝑘 𝑐𝑓 𝑘 𝑐𝑓 𝑘 𝑐𝑓(𝑙2−𝑙1) 2 𝑘 𝑐𝑓(𝑙1−𝑙2) 2 𝑘 𝑐𝑓(𝑙2−𝑙1) 2 −𝑘 𝑐𝑓(𝑙12+𝑙22) 2 ] { 𝑋𝑢 𝑋ℎ𝑓 Ɵ } = { 0 0 0 }
  • 15. 15 Now we take { 𝑋𝑢 𝑋ℎ𝑓 Ɵ } = { 𝐴𝑢 𝐴ℎ𝑓 Ɵℎ𝑓 } sinωt -ω2 sin ωt[ 𝑚 𝑢 0 0 0 𝑚ℎ𝑓 0 0 0 𝑗𝑜 ] { 𝑋𝑢 𝑋ℎ𝑓 Ɵ } +sin ωt [ 𝑘 𝑢 + 𝑘 𝑐𝑓 −𝑘 𝑐𝑓 𝑘 𝑐𝑓(𝑙1−𝑙2) 2 −𝑘 𝑐𝑓 𝑘 𝑐𝑓 𝑘 𝑐𝑓(𝑙2−𝑙1) 2 𝑘 𝑐𝑓(𝑙1−𝑙2) 2 𝑘 𝑐𝑓(𝑙2−𝑙1) 2 −𝑘 𝑐𝑓(𝑙12+𝑙22) 2 ] { 𝑋𝑢 𝑋ℎ𝑓 Ɵ } = { 0 0 0 } -ω2 [ 1.2 0 0 0 63 0 0 0 0.5419 ] { 𝑋𝑢 𝑋ℎ𝑓 Ɵ } + [ 581600 −2.16 ∗ 104 0 −2.16 ∗ 104 2.16 ∗ 104 0 0 0 −111.48 ] { 𝑋𝑢 𝑋ℎ𝑓 Ɵ }={ 0 0 0 } Assume, ω2 =⅄ [ 581600 − 1.2⅄ −2.16 ∗ 104 0 −2.16 ∗ 104 2.16 ∗ 104 − 63⅄ 0 0 0 −111.48 − 0.5419⅄ ] { 𝑋𝑢 𝑋ℎ𝑓 Ɵ }={ 0 0 0 } ⅄=[ 4.84679 0 0 0 0.00330115 0 0 0 −0.0205720 ] 105 ⅄1=4.84679*105 ⅄2=0.00330115*105
  • 16. 16 ⅄3=-0.0205720*105 𝜔3𝑛=0.0+45.3341i 𝜔1𝑛=696.19 𝑟𝑎𝑑 𝑠𝑒𝑐⁄ 𝜔2𝑛=18.16 𝑟𝑎𝑑 𝑠𝑒𝑐⁄ 𝜔3𝑛=45.35 𝑟𝑎𝑑 𝑠𝑒𝑐⁄ Eigen vectors, ∅1 = { 0.9999 −0.000707 0 } ∅2 = { 0.0371386 0.931012 0 } ∅3 = { 0 0 1.000 } Modal matrix, P=[ 0.9999 0.0371386 0 −0.000707 0.9931012 0 0 0 1.000 ] 𝑃 𝑇 =[ 0.9999 −0.000707 0 0.0371386 0.9931012 0 0 0 1.000 ]
  • 17. 17 Generalizes mass, 𝑃 𝑇 𝑀𝑃=[ 1.2 0 0 0 62.9147 0 0 0 0.054190 ] Generalized stiffness, 𝑃 𝑇 𝐾𝑃=[ 5.8163 0 0 0 0.2076911 0 0 0 −0.00111480 ] Amplitude ratio Y=0.01, ƺ=0.022 𝐹𝑜𝑟, 𝑟= 𝜔 𝜔 𝑛1 =1.8*10−3 𝑋 𝑌 =√ 1+(2ƺ𝑟)2 (1−𝑟2)2+(2ƺ𝑟)2 𝑋 𝑌 =√ 1+(2∗0.022∗1.8∗10−3)2 (1−1.8∗10−32 ) 2 +(2∗0.022∗1.8∗10−3)2 X=0.01 m 𝐹𝑜𝑟, 𝑟= 𝜔 𝜔 𝑛2 =0.069 𝑋 𝑌 =√ 1+(2ƺ𝑟)2 (1−𝑟2)2+(2ƺ𝑟)2 𝑋 𝑌 =√ 1+(2∗0.022∗0.069)2 (1−0.0692)2+(2∗0.022∗0.069)2 X=0.01 m
  • 18. 18 Frequency ratio: 𝐹𝑜𝑟, 𝑟= 𝜔 𝜔 𝑛3 =0.027 Y=0.00989m 𝑋 𝑌 =√ 1+(2ƺ𝑟)2 (1−𝑟2)2+(2ƺ𝑟)2 𝑋 𝑌 =√ 1+(2∗0.022∗0.027)2 (1−0.0272)2+(2∗0.022∗0.027)2 X=0.01 m Now we consider the force 𝑓0 sinωt Where 𝑓0=500 N F=[ 0 𝑓0 sin ωt 0 ] F=[ 0 500 0 ] sin ωt 𝑃 𝑇 F=[ 0.9999 −0.000707 0 0.0371386 0.9931012 0 0 0 1.000 ] [ 0 500 0 ] sin ωt 𝑃 𝑇 F=[ 18.569 499.65 0 ] sin ωt
  • 19. 19 Assume ƺ=0.05 𝑓𝑜𝑟 𝜔1𝑛=696.19 𝑟𝑎𝑑 𝑠𝑒𝑐⁄ 𝑐 𝑐=1670.55 𝑁𝑆 𝑚⁄ C=83.54 𝑁𝑆 𝑚⁄ 1.2𝒙̈ +83.54𝒙̇ +5.8163*𝟏𝟎 𝟓 𝒙=18.569 sin ωt Total response, 𝑥(𝑡) = 𝑒−34.81𝑡 ( 𝑥̇(0)+34.81𝑥(0) 695.32 𝑠𝑖𝑛695.32𝑡 + 𝑥(0)𝑐𝑜𝑠695.32𝑡) + (3.19*105 sin(1.265𝑡 − 𝜙)) 𝑓𝑜𝑟 𝜔12=18.16 𝑟𝑎𝑑 𝑠𝑒𝑐⁄ ƺ=0.05 𝑐 𝑐=2285.06 𝑁𝑆 𝑚⁄ C=114.25 𝑁𝑆 𝑚⁄ 62.9147𝒙̈ +114.25𝒙̇ +0.2061*𝟏𝟎 𝟓 𝒙=499.65 sin ωt 𝑥(𝑡) = 𝑒−18.14𝑡 ( 𝑥̇(0)+18.14𝑥(0) 18.14 𝑠𝑖𝑛18.14𝑡 + 𝑥(0)𝑐𝑜𝑠18.14𝑡) + (0.024sin(1.265𝑡 − 𝜙)) 𝑓𝑜𝑟 𝜔13=45.35 𝑟𝑎𝑑 𝑠𝑒𝑐⁄ ƺ=0.05 𝑐 𝑐=4.915 𝑁𝑆 𝑚⁄
  • 20. 20 C=0.2457 𝑁𝑆 𝑚⁄ 0.5419𝒙̈ +0.2457𝒙̇ +0.001148*𝟏𝟎 𝟓 𝒙=0 𝑥(𝑡) = 𝑒−2.26𝑡 ( 𝑥̇(0) + 2.26𝑥(0) 45.29 𝑠𝑖𝑛2.26𝑡 + 𝑥(0)𝑐𝑜𝑠2.26𝑡)
  • 21. 21 References: 5. http://www.rehab.research.va.gov/jour/11/483/pdf/akins.pdf 6. Damping characteristics of seat cushion materials for tractor ride comfort. By (C.R.Mehta, V.K.Tiwari)