Due to the rapid growth in technology employed by the spammers, there is a need of classifiers that are
more efficient, generic and highly adaptive. Neural Network based technologies have high ability of
adaption as well as generalization. As per our knowledge, very little work has been done in this field using
neural network. We present this paper to fill this gap. This paper evaluates performance of three supervised
learning algorithms of artificial neural network by creating classifiers for the complex problem of latest
web spam pattern classification. These algorithms are Conjugate Gradient algorithm, Resilient Backpropagation learning, and Levenberg-Marquardt algorithm.