SlideShare a Scribd company logo
Webinar : Managing Real Time Risk Analytics with MongoDB
will begin at 14:00 GMT / 7:00 AM PDT / 2:00 PM UTC

Audio should start immediately when you log into the event via
Audio Broadcast. You will need a VOID headset and reliable
internet connection for Audio Broadcast. If you are having issues
connecting, please dial 1-877-668-4493; Access code: 666 722
454.

There is a Q&A following the webinar. You can enter questions in
the chat box to the Host and Presenter.

A recording of the webinar will be available 24 hours after the
eventi s complete.

For any other issues please email webinars@10gen.com.
Easy to Start, Easy to Develop, Easy to Scale


  Managing Real Time Risk Analytics with
              MongoDB

                  10gen, Inc.

                November 2012
@dmroberts

daniel.roberts@10gen.com
       Solution Architect
        Based in London
     http://www.10gen.com/
Last Time

•Document-Oriented
                             •High Volume Data Feeds
    •Dynamic schema          •Tick Data capture
    •Agile                   •Risk Analytics
    •Flexible                •Product Catalogs & Trade
•High Performance            Capture
•Highly Available            •P&L Reporting
•Horizontal Scale Out        •Portfolio Management
                             •Reference Data Management
                             •Quantitative Analysis
                             •Automated Trading
Key Features for reporting /
             analytics


•Dynamic Query Language
•Aggregation Framework
•Dynamic & Flexible Schemas
•Atomic Updates to documents
   •Upserts
•Horizonal Scale Out
•Map Reduce
•Hadoop Integration
Sharded Architecture
Risk Analytics & Reporting
Use Case:
•Collect and aggregate risk data
•Calculate risk / exposures
•Potentially real time
Why MongoDB?
•Collect data from a single or multiple sources
   •Different formats
•Documents used to create ‘pre-aggregated’ reports
   •Real Time
•Aggregation Framework for reporting
   •e.g. exposure for a counter party
•Internal MR or Hadoop connector
   •Batch process risk data
Portfolio / Position reporting
Use Case:
•Store positions or portfolio information
•Query to find current positions/portfolios
•Query by client or trader
Why MongoDB?
•Customer/client my have many different products
•Aggregation Framework to calculate values and views
•Work on extremely large data sets
   •Current and historic data
Reporting / Analytics requirements


•How quickly do you need answers?
•How often do you need updates?
•Requirements will drive which methods to utilise.
   •Generally the high the latency tolerance the greater the insight.

•Choices
   •Batch calculations - large complex data volumes
   •Pre-Aggregated - specific and very fast
   •Real-time calculations - As needed reports and calculations
Batch Processing

•MongoDB internal Map Reduce
•Hadoop Map Reduce with MongoDB connector
                                                  raw

•Insight after batch run
                                                 hourly
   •For instance every hour or day
   •Output to documents/collection                daily
   •Fast read once data produced
                                                 monthly

•Results not up to last millisecond
•Can generate insight from huge datasets
•Rolled up stats
   •Source collections -> reporting collection
Sharded MongoDB + Hadoop
Shard 1           Shard 2           Shard 3           Shard 4           Shard 5

       c                  z         t       f         v                 w        y


a      s         u        g         e                 h       d         b        x




    Hadoop            Hadoop            Hadoop            Hadoop            Hadoop
     Node              Node              Node              Node              Node



                                                 Hadoop            Hadoop
             Hadoop            Hadoop
                                                  Node              Node
              Node              Node
Use Query Language

•Query across documents using MongoDB JSON query language
   •Infer results in the application code.
   •Dynamic - but what happens when we have 1 billion documents.
•Indexing strategy key
•var data = db.pl.find({ positionId: 1234 })[0]
            {
                 "_id" : ObjectId("50990a10fd421cb025407cb1"),
                 "positionId" : 1234,
                 "security" : "ORCL",
                 "quantity" : 1000,
                 "price" : 30.23,
                 "currency" : "USD"
            }
   data.price * data.quantity = 30230.00
Leverage schema design


•Group useful data together into documents
•Utilise upsert and $inc functionality of MongoDB
   •Pre-aggregate reports
   •$inc incrementing counters is light weight.

•Fast pre calculated data
•Low latency retrieval
•http://docs.mongodb.org/manual/use-cases/pre-aggregated-reports/
Pre-Aggregated Reports -
Daily trade volumes


// daily buckets, each hour a sub-document
{ _id: "2012-11-06-1231", security:‘ORCL’
  ts: ISODate("2012-11-06T00:00:00.000Z")
  daily: 67345234,
  minute: { 0: { 0: 2034, 1: 735, ... 59: 2644 },
             ...
            7: { 0: 15434, 1: 334, ... 59: 64234 }
           }
}
// Increment counters in document. Automatically
insert new document (upsert : true)
> db.trades.update(
   { _id: "2012-11-06-1231", security:‘ORCL’ },
   { $inc: { "minute.4.09": 1034, “daily” : 1034 } },
  true)
Aggregation Framework
•Much simpler and faster than MongoDB map reduce
•Replaces common MR use cases in MongoDB
•Native operators in the MongoDB core

db.pl.aggregate([
!   {$match:{"clientId" : 4321}},
    { $project :
       { value :
          { $multiply:["$quantity", "$price"] }
       }
    }
]);
Aggregation FIX Execution report

Calculating average price for a fulfilled order:

db.ExecutionReport.aggregate(
{
    $match : {"Instrument.Symbol":"MSFT"},
    $group :
    {
        _id : "$ClOrdID",
             reportsPerOrd : { $sum : 1 },
            totalNumOrdered : { $sum : "$OrderQtyData.OrderQty"},
            avgPrice : { $avg : "$AvgPx" }
      }
});
Summary

•Number of choices for Aggregating data.
   •MongoDB Map Reduce
   •Pre-Compute - Schema Design
   •Hadoop Connector
   •Aggregation Framework
download at mongodb.org

                    @dmroberts
             daniel.roberts@10gen.com

Free online training - http://education.10gen.com/

www.meetup.com/London-MongoDB-User-Group/



     Facebook           Twitter       LinkedIn
http://bit.ly/mongodb   @dmroberts   http://linkd.in/joinmongo
Ad

More Related Content

What's hot (20)

Webinar: Choosing the Right Shard Key for High Performance and Scale
Webinar: Choosing the Right Shard Key for High Performance and ScaleWebinar: Choosing the Right Shard Key for High Performance and Scale
Webinar: Choosing the Right Shard Key for High Performance and Scale
MongoDB
 
Real-time Analytics with Apache Flink and Druid
Real-time Analytics with Apache Flink and DruidReal-time Analytics with Apache Flink and Druid
Real-time Analytics with Apache Flink and Druid
Jan Graßegger
 
How to leverage MongoDB for Big Data Analysis and Operations with MongoDB's A...
How to leverage MongoDB for Big Data Analysis and Operations with MongoDB's A...How to leverage MongoDB for Big Data Analysis and Operations with MongoDB's A...
How to leverage MongoDB for Big Data Analysis and Operations with MongoDB's A...
Gianfranco Palumbo
 
Migrating to MongoDB: Best Practices
Migrating to MongoDB: Best PracticesMigrating to MongoDB: Best Practices
Migrating to MongoDB: Best Practices
MongoDB
 
When to Use MongoDB
When to Use MongoDBWhen to Use MongoDB
When to Use MongoDB
MongoDB
 
Agility and Scalability with MongoDB
Agility and Scalability with MongoDBAgility and Scalability with MongoDB
Agility and Scalability with MongoDB
MongoDB
 
The of Operational Analytics Data Store
The of Operational Analytics Data StoreThe of Operational Analytics Data Store
The of Operational Analytics Data Store
Rommel Garcia
 
Webinar: When to Use MongoDB
Webinar: When to Use MongoDBWebinar: When to Use MongoDB
Webinar: When to Use MongoDB
MongoDB
 
What does Netflix, NTT and Rubicon Project have in common? Apache Druid.
What does Netflix, NTT and Rubicon Project have in common? Apache Druid.What does Netflix, NTT and Rubicon Project have in common? Apache Druid.
What does Netflix, NTT and Rubicon Project have in common? Apache Druid.
Rommel Garcia
 
MongoDB and Spark
MongoDB and SparkMongoDB and Spark
MongoDB and Spark
Norberto Leite
 
MongoDB and Hadoop: Driving Business Insights
MongoDB and Hadoop: Driving Business InsightsMongoDB and Hadoop: Driving Business Insights
MongoDB and Hadoop: Driving Business Insights
MongoDB
 
Using MongoDB As a Tick Database
Using MongoDB As a Tick DatabaseUsing MongoDB As a Tick Database
Using MongoDB As a Tick Database
MongoDB
 
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor ManagementMongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
MongoDB
 
Using MongoDB + Hadoop Together
Using MongoDB + Hadoop TogetherUsing MongoDB + Hadoop Together
Using MongoDB + Hadoop Together
MongoDB
 
Back to Basics 2017: Introduction to Sharding
Back to Basics 2017: Introduction to ShardingBack to Basics 2017: Introduction to Sharding
Back to Basics 2017: Introduction to Sharding
MongoDB
 
HBaseCon 2015: HBase @ CyberAgent
HBaseCon 2015: HBase @ CyberAgentHBaseCon 2015: HBase @ CyberAgent
HBaseCon 2015: HBase @ CyberAgent
HBaseCon
 
Webinar: “ditch Oracle NOW”: Best Practices for Migrating to MongoDB
 Webinar: “ditch Oracle NOW”: Best Practices for Migrating to MongoDB Webinar: “ditch Oracle NOW”: Best Practices for Migrating to MongoDB
Webinar: “ditch Oracle NOW”: Best Practices for Migrating to MongoDB
MongoDB
 
Dan Sullivan - Data Analytics and Text Mining with MongoDB - NoSQL matters Du...
Dan Sullivan - Data Analytics and Text Mining with MongoDB - NoSQL matters Du...Dan Sullivan - Data Analytics and Text Mining with MongoDB - NoSQL matters Du...
Dan Sullivan - Data Analytics and Text Mining with MongoDB - NoSQL matters Du...
NoSQLmatters
 
RedisConf18 - Redis and Elasticsearch
RedisConf18 - Redis and ElasticsearchRedisConf18 - Redis and Elasticsearch
RedisConf18 - Redis and Elasticsearch
Redis Labs
 
Eagle6 Enterprise Situational Awareness
Eagle6 Enterprise Situational AwarenessEagle6 Enterprise Situational Awareness
Eagle6 Enterprise Situational Awareness
MongoDB
 
Webinar: Choosing the Right Shard Key for High Performance and Scale
Webinar: Choosing the Right Shard Key for High Performance and ScaleWebinar: Choosing the Right Shard Key for High Performance and Scale
Webinar: Choosing the Right Shard Key for High Performance and Scale
MongoDB
 
Real-time Analytics with Apache Flink and Druid
Real-time Analytics with Apache Flink and DruidReal-time Analytics with Apache Flink and Druid
Real-time Analytics with Apache Flink and Druid
Jan Graßegger
 
How to leverage MongoDB for Big Data Analysis and Operations with MongoDB's A...
How to leverage MongoDB for Big Data Analysis and Operations with MongoDB's A...How to leverage MongoDB for Big Data Analysis and Operations with MongoDB's A...
How to leverage MongoDB for Big Data Analysis and Operations with MongoDB's A...
Gianfranco Palumbo
 
Migrating to MongoDB: Best Practices
Migrating to MongoDB: Best PracticesMigrating to MongoDB: Best Practices
Migrating to MongoDB: Best Practices
MongoDB
 
When to Use MongoDB
When to Use MongoDBWhen to Use MongoDB
When to Use MongoDB
MongoDB
 
Agility and Scalability with MongoDB
Agility and Scalability with MongoDBAgility and Scalability with MongoDB
Agility and Scalability with MongoDB
MongoDB
 
The of Operational Analytics Data Store
The of Operational Analytics Data StoreThe of Operational Analytics Data Store
The of Operational Analytics Data Store
Rommel Garcia
 
Webinar: When to Use MongoDB
Webinar: When to Use MongoDBWebinar: When to Use MongoDB
Webinar: When to Use MongoDB
MongoDB
 
What does Netflix, NTT and Rubicon Project have in common? Apache Druid.
What does Netflix, NTT and Rubicon Project have in common? Apache Druid.What does Netflix, NTT and Rubicon Project have in common? Apache Druid.
What does Netflix, NTT and Rubicon Project have in common? Apache Druid.
Rommel Garcia
 
MongoDB and Hadoop: Driving Business Insights
MongoDB and Hadoop: Driving Business InsightsMongoDB and Hadoop: Driving Business Insights
MongoDB and Hadoop: Driving Business Insights
MongoDB
 
Using MongoDB As a Tick Database
Using MongoDB As a Tick DatabaseUsing MongoDB As a Tick Database
Using MongoDB As a Tick Database
MongoDB
 
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor ManagementMongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
MongoDB
 
Using MongoDB + Hadoop Together
Using MongoDB + Hadoop TogetherUsing MongoDB + Hadoop Together
Using MongoDB + Hadoop Together
MongoDB
 
Back to Basics 2017: Introduction to Sharding
Back to Basics 2017: Introduction to ShardingBack to Basics 2017: Introduction to Sharding
Back to Basics 2017: Introduction to Sharding
MongoDB
 
HBaseCon 2015: HBase @ CyberAgent
HBaseCon 2015: HBase @ CyberAgentHBaseCon 2015: HBase @ CyberAgent
HBaseCon 2015: HBase @ CyberAgent
HBaseCon
 
Webinar: “ditch Oracle NOW”: Best Practices for Migrating to MongoDB
 Webinar: “ditch Oracle NOW”: Best Practices for Migrating to MongoDB Webinar: “ditch Oracle NOW”: Best Practices for Migrating to MongoDB
Webinar: “ditch Oracle NOW”: Best Practices for Migrating to MongoDB
MongoDB
 
Dan Sullivan - Data Analytics and Text Mining with MongoDB - NoSQL matters Du...
Dan Sullivan - Data Analytics and Text Mining with MongoDB - NoSQL matters Du...Dan Sullivan - Data Analytics and Text Mining with MongoDB - NoSQL matters Du...
Dan Sullivan - Data Analytics and Text Mining with MongoDB - NoSQL matters Du...
NoSQLmatters
 
RedisConf18 - Redis and Elasticsearch
RedisConf18 - Redis and ElasticsearchRedisConf18 - Redis and Elasticsearch
RedisConf18 - Redis and Elasticsearch
Redis Labs
 
Eagle6 Enterprise Situational Awareness
Eagle6 Enterprise Situational AwarenessEagle6 Enterprise Situational Awareness
Eagle6 Enterprise Situational Awareness
MongoDB
 

Similar to Webinar: Managing Real Time Risk Analytics with MongoDB (20)

MongoDB in FS
MongoDB in FSMongoDB in FS
MongoDB in FS
MongoDB
 
Mongo db and hadoop driving business insights - final
Mongo db and hadoop   driving business insights - finalMongo db and hadoop   driving business insights - final
Mongo db and hadoop driving business insights - final
MongoDB
 
Augmenting Mongo DB with Treasure Data
Augmenting Mongo DB with Treasure DataAugmenting Mongo DB with Treasure Data
Augmenting Mongo DB with Treasure Data
Treasure Data, Inc.
 
Augmenting Mongo DB with treasure data
Augmenting Mongo DB with treasure dataAugmenting Mongo DB with treasure data
Augmenting Mongo DB with treasure data
Treasure Data, Inc.
 
Accra MongoDB User Group
Accra MongoDB User GroupAccra MongoDB User Group
Accra MongoDB User Group
MongoDB
 
Webinar: How Banks Use MongoDB as a Tick Database
Webinar: How Banks Use MongoDB as a Tick DatabaseWebinar: How Banks Use MongoDB as a Tick Database
Webinar: How Banks Use MongoDB as a Tick Database
MongoDB
 
Buildingsocialanalyticstoolwithmongodb
BuildingsocialanalyticstoolwithmongodbBuildingsocialanalyticstoolwithmongodb
Buildingsocialanalyticstoolwithmongodb
MongoDB APAC
 
Dataweek-Talk-2014
Dataweek-Talk-2014Dataweek-Talk-2014
Dataweek-Talk-2014
ardan-bkennedy
 
Hadoop-Quick introduction
Hadoop-Quick introductionHadoop-Quick introduction
Hadoop-Quick introduction
Sandeep Singh
 
Tugdual Grall - Real World Use Cases: Hadoop and NoSQL in Production
Tugdual Grall - Real World Use Cases: Hadoop and NoSQL in ProductionTugdual Grall - Real World Use Cases: Hadoop and NoSQL in Production
Tugdual Grall - Real World Use Cases: Hadoop and NoSQL in Production
Codemotion
 
MongoDB et Hadoop
MongoDB et HadoopMongoDB et Hadoop
MongoDB et Hadoop
MongoDB
 
MongoDB and Hadoop
MongoDB and HadoopMongoDB and Hadoop
MongoDB and Hadoop
Tugdual Grall
 
MongoDB and Hadoop: Driving Business Insights
MongoDB and Hadoop: Driving Business InsightsMongoDB and Hadoop: Driving Business Insights
MongoDB and Hadoop: Driving Business Insights
MongoDB
 
Big Data on azure
Big Data on azureBig Data on azure
Big Data on azure
David Giard
 
Nosql Now 2012: MongoDB Use Cases
Nosql Now 2012: MongoDB Use CasesNosql Now 2012: MongoDB Use Cases
Nosql Now 2012: MongoDB Use Cases
MongoDB
 
MongoDB .local Houston 2019: Building an IoT Streaming Analytics Platform to ...
MongoDB .local Houston 2019: Building an IoT Streaming Analytics Platform to ...MongoDB .local Houston 2019: Building an IoT Streaming Analytics Platform to ...
MongoDB .local Houston 2019: Building an IoT Streaming Analytics Platform to ...
MongoDB
 
Dev Jumpstart: Build Your First App with MongoDB
Dev Jumpstart: Build Your First App with MongoDBDev Jumpstart: Build Your First App with MongoDB
Dev Jumpstart: Build Your First App with MongoDB
MongoDB
 
MongoDB and Hadoop: Driving Business Insights
MongoDB and Hadoop: Driving Business InsightsMongoDB and Hadoop: Driving Business Insights
MongoDB and Hadoop: Driving Business Insights
MongoDB
 
Azure doc db (slideshare)
Azure doc db (slideshare)Azure doc db (slideshare)
Azure doc db (slideshare)
David Green
 
Introduction to BIg Data and Hadoop
Introduction to BIg Data and HadoopIntroduction to BIg Data and Hadoop
Introduction to BIg Data and Hadoop
Amir Shaikh
 
MongoDB in FS
MongoDB in FSMongoDB in FS
MongoDB in FS
MongoDB
 
Mongo db and hadoop driving business insights - final
Mongo db and hadoop   driving business insights - finalMongo db and hadoop   driving business insights - final
Mongo db and hadoop driving business insights - final
MongoDB
 
Augmenting Mongo DB with Treasure Data
Augmenting Mongo DB with Treasure DataAugmenting Mongo DB with Treasure Data
Augmenting Mongo DB with Treasure Data
Treasure Data, Inc.
 
Augmenting Mongo DB with treasure data
Augmenting Mongo DB with treasure dataAugmenting Mongo DB with treasure data
Augmenting Mongo DB with treasure data
Treasure Data, Inc.
 
Accra MongoDB User Group
Accra MongoDB User GroupAccra MongoDB User Group
Accra MongoDB User Group
MongoDB
 
Webinar: How Banks Use MongoDB as a Tick Database
Webinar: How Banks Use MongoDB as a Tick DatabaseWebinar: How Banks Use MongoDB as a Tick Database
Webinar: How Banks Use MongoDB as a Tick Database
MongoDB
 
Buildingsocialanalyticstoolwithmongodb
BuildingsocialanalyticstoolwithmongodbBuildingsocialanalyticstoolwithmongodb
Buildingsocialanalyticstoolwithmongodb
MongoDB APAC
 
Hadoop-Quick introduction
Hadoop-Quick introductionHadoop-Quick introduction
Hadoop-Quick introduction
Sandeep Singh
 
Tugdual Grall - Real World Use Cases: Hadoop and NoSQL in Production
Tugdual Grall - Real World Use Cases: Hadoop and NoSQL in ProductionTugdual Grall - Real World Use Cases: Hadoop and NoSQL in Production
Tugdual Grall - Real World Use Cases: Hadoop and NoSQL in Production
Codemotion
 
MongoDB et Hadoop
MongoDB et HadoopMongoDB et Hadoop
MongoDB et Hadoop
MongoDB
 
MongoDB and Hadoop: Driving Business Insights
MongoDB and Hadoop: Driving Business InsightsMongoDB and Hadoop: Driving Business Insights
MongoDB and Hadoop: Driving Business Insights
MongoDB
 
Big Data on azure
Big Data on azureBig Data on azure
Big Data on azure
David Giard
 
Nosql Now 2012: MongoDB Use Cases
Nosql Now 2012: MongoDB Use CasesNosql Now 2012: MongoDB Use Cases
Nosql Now 2012: MongoDB Use Cases
MongoDB
 
MongoDB .local Houston 2019: Building an IoT Streaming Analytics Platform to ...
MongoDB .local Houston 2019: Building an IoT Streaming Analytics Platform to ...MongoDB .local Houston 2019: Building an IoT Streaming Analytics Platform to ...
MongoDB .local Houston 2019: Building an IoT Streaming Analytics Platform to ...
MongoDB
 
Dev Jumpstart: Build Your First App with MongoDB
Dev Jumpstart: Build Your First App with MongoDBDev Jumpstart: Build Your First App with MongoDB
Dev Jumpstart: Build Your First App with MongoDB
MongoDB
 
MongoDB and Hadoop: Driving Business Insights
MongoDB and Hadoop: Driving Business InsightsMongoDB and Hadoop: Driving Business Insights
MongoDB and Hadoop: Driving Business Insights
MongoDB
 
Azure doc db (slideshare)
Azure doc db (slideshare)Azure doc db (slideshare)
Azure doc db (slideshare)
David Green
 
Introduction to BIg Data and Hadoop
Introduction to BIg Data and HadoopIntroduction to BIg Data and Hadoop
Introduction to BIg Data and Hadoop
Amir Shaikh
 
Ad

More from MongoDB (20)

MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB AtlasMongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB
 
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB
 
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDBMongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB
 
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB
 
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series DataMongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB
 
MongoDB SoCal 2020: MongoDB Atlas Jump Start
 MongoDB SoCal 2020: MongoDB Atlas Jump Start MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB
 
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB
 
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB
 
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB
 
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB
 
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your MindsetMongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas JumpstartMongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB
 
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB
 
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB
 
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB
 
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep DiveMongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB
 
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & GolangMongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB
 
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB
 
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB
 
Ad

Recently uploaded (20)

Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 

Webinar: Managing Real Time Risk Analytics with MongoDB

  • 1. Webinar : Managing Real Time Risk Analytics with MongoDB will begin at 14:00 GMT / 7:00 AM PDT / 2:00 PM UTC Audio should start immediately when you log into the event via Audio Broadcast. You will need a VOID headset and reliable internet connection for Audio Broadcast. If you are having issues connecting, please dial 1-877-668-4493; Access code: 666 722 454. There is a Q&A following the webinar. You can enter questions in the chat box to the Host and Presenter. A recording of the webinar will be available 24 hours after the eventi s complete. For any other issues please email [email protected].
  • 2. Easy to Start, Easy to Develop, Easy to Scale Managing Real Time Risk Analytics with MongoDB 10gen, Inc. November 2012
  • 3. @dmroberts [email protected] Solution Architect Based in London http://www.10gen.com/
  • 4. Last Time •Document-Oriented •High Volume Data Feeds •Dynamic schema •Tick Data capture •Agile •Risk Analytics •Flexible •Product Catalogs & Trade •High Performance Capture •Highly Available •P&L Reporting •Horizontal Scale Out •Portfolio Management •Reference Data Management •Quantitative Analysis •Automated Trading
  • 5. Key Features for reporting / analytics •Dynamic Query Language •Aggregation Framework •Dynamic & Flexible Schemas •Atomic Updates to documents •Upserts •Horizonal Scale Out •Map Reduce •Hadoop Integration
  • 7. Risk Analytics & Reporting Use Case: •Collect and aggregate risk data •Calculate risk / exposures •Potentially real time Why MongoDB? •Collect data from a single or multiple sources •Different formats •Documents used to create ‘pre-aggregated’ reports •Real Time •Aggregation Framework for reporting •e.g. exposure for a counter party •Internal MR or Hadoop connector •Batch process risk data
  • 8. Portfolio / Position reporting Use Case: •Store positions or portfolio information •Query to find current positions/portfolios •Query by client or trader Why MongoDB? •Customer/client my have many different products •Aggregation Framework to calculate values and views •Work on extremely large data sets •Current and historic data
  • 9. Reporting / Analytics requirements •How quickly do you need answers? •How often do you need updates? •Requirements will drive which methods to utilise. •Generally the high the latency tolerance the greater the insight. •Choices •Batch calculations - large complex data volumes •Pre-Aggregated - specific and very fast •Real-time calculations - As needed reports and calculations
  • 10. Batch Processing •MongoDB internal Map Reduce •Hadoop Map Reduce with MongoDB connector raw •Insight after batch run hourly •For instance every hour or day •Output to documents/collection daily •Fast read once data produced monthly •Results not up to last millisecond •Can generate insight from huge datasets •Rolled up stats •Source collections -> reporting collection
  • 11. Sharded MongoDB + Hadoop Shard 1 Shard 2 Shard 3 Shard 4 Shard 5 c z t f v w y a s u g e h d b x Hadoop Hadoop Hadoop Hadoop Hadoop Node Node Node Node Node Hadoop Hadoop Hadoop Hadoop Node Node Node Node
  • 12. Use Query Language •Query across documents using MongoDB JSON query language •Infer results in the application code. •Dynamic - but what happens when we have 1 billion documents. •Indexing strategy key •var data = db.pl.find({ positionId: 1234 })[0] { "_id" : ObjectId("50990a10fd421cb025407cb1"), "positionId" : 1234, "security" : "ORCL", "quantity" : 1000, "price" : 30.23, "currency" : "USD" } data.price * data.quantity = 30230.00
  • 13. Leverage schema design •Group useful data together into documents •Utilise upsert and $inc functionality of MongoDB •Pre-aggregate reports •$inc incrementing counters is light weight. •Fast pre calculated data •Low latency retrieval •http://docs.mongodb.org/manual/use-cases/pre-aggregated-reports/
  • 14. Pre-Aggregated Reports - Daily trade volumes // daily buckets, each hour a sub-document { _id: "2012-11-06-1231", security:‘ORCL’ ts: ISODate("2012-11-06T00:00:00.000Z") daily: 67345234, minute: { 0: { 0: 2034, 1: 735, ... 59: 2644 }, ... 7: { 0: 15434, 1: 334, ... 59: 64234 } } } // Increment counters in document. Automatically insert new document (upsert : true) > db.trades.update( { _id: "2012-11-06-1231", security:‘ORCL’ }, { $inc: { "minute.4.09": 1034, “daily” : 1034 } }, true)
  • 15. Aggregation Framework •Much simpler and faster than MongoDB map reduce •Replaces common MR use cases in MongoDB •Native operators in the MongoDB core db.pl.aggregate([ ! {$match:{"clientId" : 4321}}, { $project : { value : { $multiply:["$quantity", "$price"] } } } ]);
  • 16. Aggregation FIX Execution report Calculating average price for a fulfilled order: db.ExecutionReport.aggregate( { $match : {"Instrument.Symbol":"MSFT"}, $group : { _id : "$ClOrdID", reportsPerOrd : { $sum : 1 }, totalNumOrdered : { $sum : "$OrderQtyData.OrderQty"}, avgPrice : { $avg : "$AvgPx" } } });
  • 17. Summary •Number of choices for Aggregating data. •MongoDB Map Reduce •Pre-Compute - Schema Design •Hadoop Connector •Aggregation Framework
  • 18. download at mongodb.org @dmroberts [email protected] Free online training - http://education.10gen.com/ www.meetup.com/London-MongoDB-User-Group/ Facebook Twitter LinkedIn http://bit.ly/mongodb @dmroberts http://linkd.in/joinmongo