This document discusses various techniques for evaluating machine learning models and comparing their performance, including:
- Measuring error rates on separate test and training sets to avoid overfitting
- Using techniques like cross-validation, bootstrapping, and holdout validation when data is limited
- Comparing algorithms using statistical tests like paired t-tests
- Accounting for costs of different prediction outcomes in evaluation and model training
- Visualizing performance using lift charts and ROC curves to compare models
- The Minimum Description Length principle for selecting the model that best compresses the data