Check out what Change Data Capture (CDC) is and why it is becoming ever more important. Slides also include useful tips on how to design your CDC implementation.
Change Data Capture (CDC) - Most RDBMS vendors have a version of it, and most data warehouse professionals have built it in one form or another. This presentation will define CDC and its close relative changed data capture. It explains how the reasons for CDC and the destinations for the captured changes drive how to best capture change data. Different pitfalls associated with processing of change data into the respective destinations are exposed. Attendees will know when to use which CDC method, how to process the captured changes into their destinations, and be able to provide a clear rationale for their choice.
Planning your Next-Gen Change Data Capture (CDC) Architecture in 2019 - Strea...Impetus Technologies
Traditional databases and batch ETL operations have not been able to serve the growing data volumes and the need for fast and continuous data processing.
How can modern enterprises provide their business users real-time access to the most up-to-date and complete data?
In our upcoming webinar, our experts will talk about how real-time CDC improves data availability and fast data processing through incremental updates in the big data lake, without modifying or slowing down source systems. Join this session to learn:
What is CDC and how it impacts business
The various methods for CDC in the enterprise data warehouse
The key factors to consider while building a next-gen CDC architecture:
Batch vs. real-time approaches
Moving from just capturing and storing, to capturing enriching, transforming, and storing
Avoiding stopgap silos to state-through processing
Implementation of CDC through a live demo and use-case
You can view the webinar here - https://www.streamanalytix.com/webinar/planning-your-next-gen-change-data-capture-cdc-architecture-in-2019/
For more information visit - https://www.streamanalytix.com
Apache Iceberg Presentation for the St. Louis Big Data IDEAAdam Doyle
Presentation on Apache Iceberg for the February 2021 St. Louis Big Data IDEA. Apache Iceberg is an alternative database platform that works with Hive and Spark.
Exploring Scenarios of Flink CDC in Streaming Data IntegrationLeonard Xu
Description
The freshness of data significantly impacts the value of data insights, especially for business data stored in databases. The rapid development of real-time computing and real-time analytics technologies has increased the demand for low-latency data pipelines. Establishing a real-time synchronization pipeline can make the entire business decision-making process more efficient.
Flink CDC is an end-to-end streaming ETL tool built on Apache Flink, allowing users to easily construct streaming data integration pipelines using YAML language. In this session, I will analyze the mainstream business scenarios and challenges of building real-time data synchronization pipelines, delve into the key design and implementation of Flink CDC, and share how Flink CDC elegantly addresses these challenges, including schema evolution, full database synchronization, dynamic table addition, automatic merging of sharded tables, column projection, and filtering.
This document provides an overview and summary of Oracle Data Guard. It discusses the key benefits of Data Guard including disaster recovery, data protection, and high availability. It describes the different types of Data Guard configurations including physical and logical standbys. The document outlines the basic architecture and processes involved in implementing Data Guard including redo transport, apply services, and role transitions. It also summarizes some of the features and protection modes available in different Oracle database versions.
Snowflake: The Good, the Bad, and the UglyTyler Wishnoff
Learn how to solve the top 3 challenges Snowflake customers face, and what you can do to ensure high-performance, intelligent analytics at any scale. Ideal for those currently using Snowflake and those considering it. Learn more at: https://kyligence.io/
In this webinar you'll learn how to quickly and easily improve your business using Snowflake and Matillion ETL for Snowflake. Webinar presented by Solution Architects Craig Collier (Snowflake) adn Kalyan Arangam (Matillion).
In this webinar:
- Learn to optimize Snowflake and leverage Matillion ETL for Snowflake
- Discover tips and tricks to improve performance
- Get invaluable insights from data warehousing pros
This document discusses change data capture (CDC) and its components. CDC is an approach that identifies, captures, and delivers changes made to enterprise data sources. It feeds these changes into a central data stream that can be combined with other data sources in real-time. The document outlines Kafka Connect, Debezium, Schema Registry, and Apache Avro which are key parts of the CDC architecture. It also discusses future steps like supporting additional databases and improving deployment, as well as open issues around performance and compatibility with certain databases.
This is a presentation I gave in 2006 for Bill Inmon. The presentation covers Data Vault and how it integrates with Bill Inmon's DW2.0 vision. This is focused on the business intelligence side of the house.
IF you want to use these slides, please put (C) Dan Linstedt, all rights reserved, http://LearnDataVault.com
Squirreling Away $640 Billion: How Stripe Leverages Flink for Change Data Cap...Flink Forward
Flink Forward San Francisco 2022.
Being in the payments space, Stripe requires strict correctness and freshness guarantees. We rely on Flink as the natural solution for delivering on this in support of our Change Data Capture (CDC) infrastructure. We heavily rely on CDC as a tool for capturing data change streams from our databases without critically impacting database reliability, scalability, and maintainability. Data derived from these streams is used broadly across the business and powers many of our critical financial reporting systems totalling over $640 Billion in payment volume annually. We use many components of Flink’s flexible DataStream API to perform aggregations and abstract away the complexities of stream processing from our downstreams. In this talk, we’ll walk through our experience from the very beginning to what we have in production today. We’ll share stories around the technical details and trade-offs we encountered along the way.
by
Jeff Chao
Delta Lake OSS: Create reliable and performant Data Lake by Quentin AmbardParis Data Engineers !
Delta Lake is an open source framework living on top of parquet in your data lake to provide Reliability and performances. It has been open-sourced by Databricks this year and is gaining traction to become the defacto delta lake format.
We’ll see all the goods Delta Lake can do to your data with ACID transactions, DDL operations, Schema enforcement, batch and stream support etc !
Modernizing to a Cloud Data ArchitectureDatabricks
Organizations with on-premises Hadoop infrastructure are bogged down by system complexity, unscalable infrastructure, and the increasing burden on DevOps to manage legacy architectures. Costs and resource utilization continue to go up while innovation has flatlined. In this session, you will learn why, now more than ever, enterprises are looking for cloud alternatives to Hadoop and are migrating off of the architecture in large numbers. You will also learn how elastic compute models’ benefits help one customer scale their analytics and AI workloads and best practices from their experience on a successful migration of their data and workloads to the cloud.
Delta Lake is an open source storage layer that sits on top of data lakes and brings ACID transactions and reliability to Apache Spark. It addresses challenges with data lakes like lack of schema enforcement and transactions. Delta Lake provides features like ACID transactions, scalable metadata handling, schema enforcement and evolution, time travel/data versioning, and unified batch and streaming processing. Delta Lake stores data in Apache Parquet format and uses a transaction log to track changes and ensure consistency even for large datasets. It allows for updates, deletes, and merges while enforcing schemas during writes.
The document discusses Oracle Data Guard, a disaster recovery solution for Oracle databases. It provides:
1) An overview of Data Guard, explaining that it maintains a physical or logical standby copy of the primary database to enable failover in the event of outages or disasters.
2) Details on the different types of standby databases - physical, logical, and snapshot - and how they are maintained through redo application or SQL application.
3) The various Data Guard configuration options like real-time apply, time delay, and role transitions such as switchover and failover.
Introduction to Snowflake Datawarehouse and Architecture for Big data company. Centralized data management. Snowpipe and Copy into a command for data loading. Stream loading and Batch Processing.
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...Databricks
Structured Streaming has proven to be the best platform for building distributed stream processing applications. Its unified SQL/Dataset/DataFrame APIs and Spark’s built-in functions make it easy for developers to express complex computations. Delta Lake, on the other hand, is the best way to store structured data because it is a open-source storage layer that brings ACID transactions to Apache Spark and big data workloads Together, these can make it very easy to build pipelines in many common scenarios. However, expressing the business logic is only part of the larger problem of building end-to-end streaming pipelines that interact with a complex ecosystem of storage systems and workloads. It is important for the developer to truly understand the business problem that needs to be solved. Apache Spark, being a unified analytics engine doing both batch and stream processing, often provides multiples ways to solve the same problem. So understanding the requirements carefully helps you to architect your pipeline that solves your business needs in the most resource efficient manner.
In this talk, I am going examine a number common streaming design patterns in the context of the following questions.
WHAT are you trying to consume? What are you trying to produce? What is the final output that the business wants? What are your throughput and latency requirements?
WHY do you really have those requirements? Would solving the requirements of the individual pipeline actually solve your end-to-end business requirements?
HOW are going to architect the solution? And how much are you willing to pay for it?
Clarity in understanding the ‘what and why’ of any problem can automatically much clarity on the ‘how’ to architect it using Structured Streaming and, in many cases, Delta Lake.
Deep-dive into Microservices Patterns with Replication and Stream Analytics
Target Audience: Microservices and Data Architects
This is an informational presentation about microservices event patterns, GoldenGate event replication, and event stream processing with Oracle Stream Analytics. This session will discuss some of the challenges of working with data in a microservices architecture (MA), and how the emerging concept of a “Data Mesh” can go hand-in-hand to improve microservices-based data management patterns. You may have already heard about common microservices patterns like CQRS, Saga, Event Sourcing and Transaction Outbox; we’ll share how GoldenGate can simplify these patterns while also bringing stronger data consistency to your microservice integrations. We will also discuss how complex event processing (CEP) and stream processing can be used with event-driven MA for operational and analytical use cases.
Business pressures for modernization and digital transformation drive demand for rapid, flexible DevOps, which microservices address, but also for data-driven Analytics, Machine Learning and Data Lakes which is where data management tech really shines. Join us for this presentation where we take a deep look at the intersection of microservice design patterns and modern data integration tech.
Understanding Azure Data Factory: The What, When, and Why (NIC 2020)Cathrine Wilhelmsen
The document is a presentation on Azure Data Factory that discusses what it is, when and why it would be used, and how to work with it. It defines Azure Data Factory as a data integration service that can copy and transform data. It demonstrates how to use Azure Data Factory to copy data between cloud and on-premises data stores, transform data using mapping and wrangling data flows, and schedule data pipelines using triggers. Common data architectures that use Azure Data Factory are also presented.
Demystifying Data Warehousing as a Service - DFWKent Graziano
This document provides an overview and introduction to Snowflake's cloud data warehousing capabilities. It begins with the speaker's background and credentials. It then discusses common data challenges organizations face today around data silos, inflexibility, and complexity. The document defines what a cloud data warehouse as a service (DWaaS) is and explains how it can help address these challenges. It provides an agenda for the topics to be covered, including features of Snowflake's cloud DWaaS and how it enables use cases like data mart consolidation and integrated data analytics. The document highlights key aspects of Snowflake's architecture and technology.
Oracle Transparent Data Encryption (TDE) 12cNabeel Yoosuf
This presentation provides an introduction to Oracle Transparent Data Encryption technology in 12c. It is provided as part of Oracle Advanced Security.
The document provides an introduction to Oracle Data Guard and high availability concepts. It discusses how Data Guard maintains standby databases to protect primary database data from failures, disasters, and errors. It describes different types of standby databases, including physical and logical standby databases, and how redo logs are applied from the primary database to keep the standbys synchronized. Real-time apply is also introduced, which allows for more up-to-date synchronization between databases with faster failover times.
Yifeng Jiang gives a presentation introducing Apache Nifi. He begins with an overview of himself and the agenda. He then provides an introduction to Nifi including terminology like FlowFile and Processor. Key aspects of Nifi are demonstrated including the user interface, provenance tracking, queue prioritization, cluster architecture, and a demo of real-time data processing. Example use cases are discussed like indexing JSON tweets and indexing data from a relational database. The presentation concludes that Nifi is an easy to use and powerful system for processing and distributing data with 90 built-in processors.
Optimize the performance, cost, and value of databases.pptxIDERA Software
Today’s businesses run on data, making it essential for them to access data quickly and easily. This requirement means that databases must run efficiently at all times but keeping a database performing at its best remains a challenging task. Fortunately, database administrators (DBAs) can adopt many practices to achieve this goal, thus saving time and money.
Building a high-performance data lake analytics engine at Alibaba Cloud with ...Alluxio, Inc.
This document discusses optimizations made to Alibaba Cloud's Data Lake Analytics (DLA) engine, which uses Presto, to improve performance when querying data stored in Object Storage Service (OSS). The optimizations included decreasing OSS API request counts, implementing an Alluxio data cache using local disks on Presto workers, and improving disk throughput by utilizing multiple ultra disks. These changes increased cache hit ratios and query performance for workloads involving large scans of data stored in OSS. Future plans include supporting an Alluxio cluster shared by multiple users and additional caching techniques.
Data Lakehouse, Data Mesh, and Data Fabric (r1)James Serra
So many buzzwords of late: Data Lakehouse, Data Mesh, and Data Fabric. What do all these terms mean and how do they compare to a data warehouse? In this session I’ll cover all of them in detail and compare the pros and cons of each. I’ll include use cases so you can see what approach will work best for your big data needs.
Differentiate Big Data vs Data Warehouse use cases for a cloud solutionJames Serra
It can be quite challenging keeping up with the frequent updates to the Microsoft products and understanding all their use cases and how all the products fit together. In this session we will differentiate the use cases for each of the Microsoft services, explaining and demonstrating what is good and what isn't, in order for you to position, design and deliver the proper adoption use cases for each with your customers. We will cover a wide range of products such as Databricks, SQL Data Warehouse, HDInsight, Azure Data Lake Analytics, Azure Data Lake Store, Blob storage, and AAS as well as high-level concepts such as when to use a data lake. We will also review the most common reference architectures (“patterns”) witnessed in customer adoption.
Logical Data Fabric: Architectural ComponentsDenodo
Watch full webinar here: https://bit.ly/39MWm7L
Is the Logical Data Fabric one monolithic technology or does it comprise of various components? If so, what are they? In this presentation, Denodo CTO Alberto Pan will elucidate what components make up the logical data fabric.
[db tech showcase Tokyo 2016] E34: Oracle SE - RAC, HA and Standby are Still ...Insight Technology, Inc.
Standard Edition (SE) is alive and well – maybe it had some growing pains over the last year, BUT it is here to stay! SE is a powerful database albeit with some limitations. whether it is using a Cloud based environment or on premise. In this session we will discuss Oracle SE and review some of the recent changes and the introduction of the new kid on the block – Standard Edition 2 (SE2). Topics that will be discussed include moving between Editions, High Availability, Disaster Recovery as well as Backup and Recovery.
Which Change Data Capture Strategy is Right for You?Precisely
Change Data Capture or CDC is the practice of moving the changes made in an important transactional system to other systems, so that data is kept current and consistent across the enterprise. CDC keeps reporting and analytic systems working on the latest, most accurate data.
Many different CDC strategies exist. Each strategy has advantages and disadvantages. Some put an undue burden on the source database. They can cause queries or applications to become slow or even fail. Some bog down network bandwidth, or have big delays between change and replication.
Each business process has different requirements, as well. For some business needs, a replication delay of more than a second is too long. For others, a delay of less than 24 hours is excellent.
Which CDC strategy will match your business needs? How do you choose?
View this webcast on-demand to learn:
• Advantages and disadvantages of different CDC methods
• The replication latency your project requires
• How to keep data current in Big Data technologies like Hadoop
This document discusses change data capture (CDC) and its components. CDC is an approach that identifies, captures, and delivers changes made to enterprise data sources. It feeds these changes into a central data stream that can be combined with other data sources in real-time. The document outlines Kafka Connect, Debezium, Schema Registry, and Apache Avro which are key parts of the CDC architecture. It also discusses future steps like supporting additional databases and improving deployment, as well as open issues around performance and compatibility with certain databases.
This is a presentation I gave in 2006 for Bill Inmon. The presentation covers Data Vault and how it integrates with Bill Inmon's DW2.0 vision. This is focused on the business intelligence side of the house.
IF you want to use these slides, please put (C) Dan Linstedt, all rights reserved, http://LearnDataVault.com
Squirreling Away $640 Billion: How Stripe Leverages Flink for Change Data Cap...Flink Forward
Flink Forward San Francisco 2022.
Being in the payments space, Stripe requires strict correctness and freshness guarantees. We rely on Flink as the natural solution for delivering on this in support of our Change Data Capture (CDC) infrastructure. We heavily rely on CDC as a tool for capturing data change streams from our databases without critically impacting database reliability, scalability, and maintainability. Data derived from these streams is used broadly across the business and powers many of our critical financial reporting systems totalling over $640 Billion in payment volume annually. We use many components of Flink’s flexible DataStream API to perform aggregations and abstract away the complexities of stream processing from our downstreams. In this talk, we’ll walk through our experience from the very beginning to what we have in production today. We’ll share stories around the technical details and trade-offs we encountered along the way.
by
Jeff Chao
Delta Lake OSS: Create reliable and performant Data Lake by Quentin AmbardParis Data Engineers !
Delta Lake is an open source framework living on top of parquet in your data lake to provide Reliability and performances. It has been open-sourced by Databricks this year and is gaining traction to become the defacto delta lake format.
We’ll see all the goods Delta Lake can do to your data with ACID transactions, DDL operations, Schema enforcement, batch and stream support etc !
Modernizing to a Cloud Data ArchitectureDatabricks
Organizations with on-premises Hadoop infrastructure are bogged down by system complexity, unscalable infrastructure, and the increasing burden on DevOps to manage legacy architectures. Costs and resource utilization continue to go up while innovation has flatlined. In this session, you will learn why, now more than ever, enterprises are looking for cloud alternatives to Hadoop and are migrating off of the architecture in large numbers. You will also learn how elastic compute models’ benefits help one customer scale their analytics and AI workloads and best practices from their experience on a successful migration of their data and workloads to the cloud.
Delta Lake is an open source storage layer that sits on top of data lakes and brings ACID transactions and reliability to Apache Spark. It addresses challenges with data lakes like lack of schema enforcement and transactions. Delta Lake provides features like ACID transactions, scalable metadata handling, schema enforcement and evolution, time travel/data versioning, and unified batch and streaming processing. Delta Lake stores data in Apache Parquet format and uses a transaction log to track changes and ensure consistency even for large datasets. It allows for updates, deletes, and merges while enforcing schemas during writes.
The document discusses Oracle Data Guard, a disaster recovery solution for Oracle databases. It provides:
1) An overview of Data Guard, explaining that it maintains a physical or logical standby copy of the primary database to enable failover in the event of outages or disasters.
2) Details on the different types of standby databases - physical, logical, and snapshot - and how they are maintained through redo application or SQL application.
3) The various Data Guard configuration options like real-time apply, time delay, and role transitions such as switchover and failover.
Introduction to Snowflake Datawarehouse and Architecture for Big data company. Centralized data management. Snowpipe and Copy into a command for data loading. Stream loading and Batch Processing.
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...Databricks
Structured Streaming has proven to be the best platform for building distributed stream processing applications. Its unified SQL/Dataset/DataFrame APIs and Spark’s built-in functions make it easy for developers to express complex computations. Delta Lake, on the other hand, is the best way to store structured data because it is a open-source storage layer that brings ACID transactions to Apache Spark and big data workloads Together, these can make it very easy to build pipelines in many common scenarios. However, expressing the business logic is only part of the larger problem of building end-to-end streaming pipelines that interact with a complex ecosystem of storage systems and workloads. It is important for the developer to truly understand the business problem that needs to be solved. Apache Spark, being a unified analytics engine doing both batch and stream processing, often provides multiples ways to solve the same problem. So understanding the requirements carefully helps you to architect your pipeline that solves your business needs in the most resource efficient manner.
In this talk, I am going examine a number common streaming design patterns in the context of the following questions.
WHAT are you trying to consume? What are you trying to produce? What is the final output that the business wants? What are your throughput and latency requirements?
WHY do you really have those requirements? Would solving the requirements of the individual pipeline actually solve your end-to-end business requirements?
HOW are going to architect the solution? And how much are you willing to pay for it?
Clarity in understanding the ‘what and why’ of any problem can automatically much clarity on the ‘how’ to architect it using Structured Streaming and, in many cases, Delta Lake.
Deep-dive into Microservices Patterns with Replication and Stream Analytics
Target Audience: Microservices and Data Architects
This is an informational presentation about microservices event patterns, GoldenGate event replication, and event stream processing with Oracle Stream Analytics. This session will discuss some of the challenges of working with data in a microservices architecture (MA), and how the emerging concept of a “Data Mesh” can go hand-in-hand to improve microservices-based data management patterns. You may have already heard about common microservices patterns like CQRS, Saga, Event Sourcing and Transaction Outbox; we’ll share how GoldenGate can simplify these patterns while also bringing stronger data consistency to your microservice integrations. We will also discuss how complex event processing (CEP) and stream processing can be used with event-driven MA for operational and analytical use cases.
Business pressures for modernization and digital transformation drive demand for rapid, flexible DevOps, which microservices address, but also for data-driven Analytics, Machine Learning and Data Lakes which is where data management tech really shines. Join us for this presentation where we take a deep look at the intersection of microservice design patterns and modern data integration tech.
Understanding Azure Data Factory: The What, When, and Why (NIC 2020)Cathrine Wilhelmsen
The document is a presentation on Azure Data Factory that discusses what it is, when and why it would be used, and how to work with it. It defines Azure Data Factory as a data integration service that can copy and transform data. It demonstrates how to use Azure Data Factory to copy data between cloud and on-premises data stores, transform data using mapping and wrangling data flows, and schedule data pipelines using triggers. Common data architectures that use Azure Data Factory are also presented.
Demystifying Data Warehousing as a Service - DFWKent Graziano
This document provides an overview and introduction to Snowflake's cloud data warehousing capabilities. It begins with the speaker's background and credentials. It then discusses common data challenges organizations face today around data silos, inflexibility, and complexity. The document defines what a cloud data warehouse as a service (DWaaS) is and explains how it can help address these challenges. It provides an agenda for the topics to be covered, including features of Snowflake's cloud DWaaS and how it enables use cases like data mart consolidation and integrated data analytics. The document highlights key aspects of Snowflake's architecture and technology.
Oracle Transparent Data Encryption (TDE) 12cNabeel Yoosuf
This presentation provides an introduction to Oracle Transparent Data Encryption technology in 12c. It is provided as part of Oracle Advanced Security.
The document provides an introduction to Oracle Data Guard and high availability concepts. It discusses how Data Guard maintains standby databases to protect primary database data from failures, disasters, and errors. It describes different types of standby databases, including physical and logical standby databases, and how redo logs are applied from the primary database to keep the standbys synchronized. Real-time apply is also introduced, which allows for more up-to-date synchronization between databases with faster failover times.
Yifeng Jiang gives a presentation introducing Apache Nifi. He begins with an overview of himself and the agenda. He then provides an introduction to Nifi including terminology like FlowFile and Processor. Key aspects of Nifi are demonstrated including the user interface, provenance tracking, queue prioritization, cluster architecture, and a demo of real-time data processing. Example use cases are discussed like indexing JSON tweets and indexing data from a relational database. The presentation concludes that Nifi is an easy to use and powerful system for processing and distributing data with 90 built-in processors.
Optimize the performance, cost, and value of databases.pptxIDERA Software
Today’s businesses run on data, making it essential for them to access data quickly and easily. This requirement means that databases must run efficiently at all times but keeping a database performing at its best remains a challenging task. Fortunately, database administrators (DBAs) can adopt many practices to achieve this goal, thus saving time and money.
Building a high-performance data lake analytics engine at Alibaba Cloud with ...Alluxio, Inc.
This document discusses optimizations made to Alibaba Cloud's Data Lake Analytics (DLA) engine, which uses Presto, to improve performance when querying data stored in Object Storage Service (OSS). The optimizations included decreasing OSS API request counts, implementing an Alluxio data cache using local disks on Presto workers, and improving disk throughput by utilizing multiple ultra disks. These changes increased cache hit ratios and query performance for workloads involving large scans of data stored in OSS. Future plans include supporting an Alluxio cluster shared by multiple users and additional caching techniques.
Data Lakehouse, Data Mesh, and Data Fabric (r1)James Serra
So many buzzwords of late: Data Lakehouse, Data Mesh, and Data Fabric. What do all these terms mean and how do they compare to a data warehouse? In this session I’ll cover all of them in detail and compare the pros and cons of each. I’ll include use cases so you can see what approach will work best for your big data needs.
Differentiate Big Data vs Data Warehouse use cases for a cloud solutionJames Serra
It can be quite challenging keeping up with the frequent updates to the Microsoft products and understanding all their use cases and how all the products fit together. In this session we will differentiate the use cases for each of the Microsoft services, explaining and demonstrating what is good and what isn't, in order for you to position, design and deliver the proper adoption use cases for each with your customers. We will cover a wide range of products such as Databricks, SQL Data Warehouse, HDInsight, Azure Data Lake Analytics, Azure Data Lake Store, Blob storage, and AAS as well as high-level concepts such as when to use a data lake. We will also review the most common reference architectures (“patterns”) witnessed in customer adoption.
Logical Data Fabric: Architectural ComponentsDenodo
Watch full webinar here: https://bit.ly/39MWm7L
Is the Logical Data Fabric one monolithic technology or does it comprise of various components? If so, what are they? In this presentation, Denodo CTO Alberto Pan will elucidate what components make up the logical data fabric.
[db tech showcase Tokyo 2016] E34: Oracle SE - RAC, HA and Standby are Still ...Insight Technology, Inc.
Standard Edition (SE) is alive and well – maybe it had some growing pains over the last year, BUT it is here to stay! SE is a powerful database albeit with some limitations. whether it is using a Cloud based environment or on premise. In this session we will discuss Oracle SE and review some of the recent changes and the introduction of the new kid on the block – Standard Edition 2 (SE2). Topics that will be discussed include moving between Editions, High Availability, Disaster Recovery as well as Backup and Recovery.
Which Change Data Capture Strategy is Right for You?Precisely
Change Data Capture or CDC is the practice of moving the changes made in an important transactional system to other systems, so that data is kept current and consistent across the enterprise. CDC keeps reporting and analytic systems working on the latest, most accurate data.
Many different CDC strategies exist. Each strategy has advantages and disadvantages. Some put an undue burden on the source database. They can cause queries or applications to become slow or even fail. Some bog down network bandwidth, or have big delays between change and replication.
Each business process has different requirements, as well. For some business needs, a replication delay of more than a second is too long. For others, a delay of less than 24 hours is excellent.
Which CDC strategy will match your business needs? How do you choose?
View this webcast on-demand to learn:
• Advantages and disadvantages of different CDC methods
• The replication latency your project requires
• How to keep data current in Big Data technologies like Hadoop
Big Iron + Big Data = BIG DEAL! Unlock The Power of Your Mainframe DataCA Technologies
Struggling to analyze mainframe data to make the right Big Data decisions? Big Data environments are no longer an option; they are business-critical for any organization today. Your company can easily take advantage of your mission-critical data with key new innovations. Learn how the right Big Data strategy can unlock your Big Iron data and open up maximum insight to critical business decisions.
For more information, please visit http://cainc.to/Nv2VOe
Faster, Cheaper, Easier... and Successful Best Practices for Big Data Integra...DataWorks Summit
This document provides best practices for big data integration, including:
1. No hand coding data integration processes, as tooling can reduce costs by 90% and timelines by 90% compared to hand coding.
2. Using a single, enterprise-wide data integration and governance platform that can run integration processes across different platforms.
3. Ensuring data integration can scale massively and run wherever needed, such as in databases, ETL engines, or Hadoop environments.
4. Implementing world-class data governance across the enterprise.
5. Providing robust administration and operations controls across platforms.
Unlock Hadoop Success with Cloudera Navigator OptimizerCloudera, Inc.
Cloudera Navigator Optimizer analyzes existing SQL workloads to provide instant insights into your workloads and turns that into an intelligent optimization strategy so you can unlock peak performance and efficiency with Hadoop.
Can Your Mobile Infrastructure Survive 1 Million Concurrent Users?TechWell
When you’re building the next killer mobile app, how can you ensure that your app is both stable and capable of near-instant data updates? The answer: Build a backend! Siva Katir says that there’s much more to building a backend than standing up a SQL server in your datacenter and calling it a day. Since different types of apps demand different backend services, how do you know what sort of backend you need? And, more importantly, how can you ensure that your backend scales so you can survive an explosion of users when you are featured in the app store? Siva discusses the common scenarios facing mobile app developers looking to expand beyond just the device. He’ll share best practices learned while building the PlayFab and other companies’ backends. Join Siva to learn how you can ensure that your app can scale safely and affordably into the millions of concurrent users and across multiple platforms.
The document discusses how MySQL can be used to unlock insights from big data. It describes how MySQL provides both SQL and NoSQL access to data stored in Hadoop, allowing organizations to analyze large, diverse datasets. Tools like Apache Sqoop and the MySQL Applier for Hadoop are used to import data from MySQL to Hadoop for advanced analytics, while solutions like MySQL Fabric allow databases to scale out through data sharding.
Google take on heterogeneous data base replication Svetlin Stanchev
Datastream from Google is a serverless change data capture and replication service. This allows organizations to replicate data across multiple databases, storage systems and is especially useful for replicating OLTP data in MySQL into an OLAP database such as BigQuery. This talk walks through setting up connection profiles, streams and touch on some useful debugging if things don't go as planned
The document discusses various data warehouse design considerations including slowly changing dimensions, indexing, data compression, data lineage, and partitioning. It describes type 1 and type 2 slowly changing dimensions and how they handle changes to dimension data. It also provides guidance on indexing dimension and fact tables as well as the different index types supported in SQL Server.
Big Data with KNIME is as easy as 1, 2, 3, ...4!KNIMESlides
This document discusses how KNIME can be used for big data analytics. It describes the challenges of variety, volume, and velocity of big data. It then provides examples of using KNIME workflows to access and analyze big data from Hadoop and Spark, including connecting to databases, performing in-database operations, importing data into KNIME, and using nodes specific to big data platforms.
Big Data as easy as 1, 2, 3, ... 4 ... with KNIMERosaria Silipo
This talk shows how easy it is to connect and process data on a big data platform from within the KNIME Data Analytics platform. It is as easy as 1,2,3 4, steps!
Apache Hive is a rapidly evolving project which continues to enjoy great adoption in the big data ecosystem. As Hive continues to grow its support for analytics, reporting, and interactive query, the community is hard at work in improving it along with many different dimensions and use cases. This talk will provide an overview of the latest and greatest features and optimizations which have landed in the project over the last year. Materialized views, the extension of ACID semantics to non-ORC data, and workload management are some noteworthy new features.
We will discuss optimizations which provide major performance gains, including significantly improved performance for ACID tables. The talk will also provide a glimpse of what is expected to come in the near future.
The document provides an introduction to the ConfD Database (CDB), which is a hierarchical, ACID-compliant database used by ConfD to store configuration and operational data modeled with YANG. CDB stores data both in-memory and persistently on disk, supports transactions, replication, and automatic schema upgrades. Managed objects use CDB APIs to read configuration data at startup and subscribe to relevant configuration changes via a subscription socket.
The document discusses building a data warehouse in SQL Server. It provides an agenda that covers topics like an overview of data warehousing, data warehouse design, dimension and fact tables, and physical design. It also discusses components of a data warehousing solution like the data warehouse database, ETL processes, and security considerations.
The best DBAs tune SQL Server for performance at the server, instance, and database layers. This allows for both the logical and physical database designs to meet performance expectations. But it can be difficult to know which configuration options are better than others. Learn expert tips from Microsoft Certified Masters Tim Chapman and Thomas LaRock.
Presentation by Mark Rittman, Technical Director, Rittman Mead, on ODI 11g features that support enterprise deployment and usage. Delivered at BIWA Summit 2013, January 2013.
Apache Hive is a rapidly evolving project which continues to enjoy great adoption in the big data ecosystem. As Hive continues to grow its support for analytics, reporting, and interactive query, the community is hard at work in improving it along with many different dimensions and use cases. This talk will provide an overview of the latest and greatest features and optimizations which have landed in the project over the last year. Materialized views, the extension of ACID semantics to non-ORC data, and workload management are some noteworthy new features.
We will discuss optimizations which provide major performance gains, including significantly improved performance for ACID tables. The talk will also provide a glimpse of what is expected to come in the near future.
Speaker: Alan Gates, Co-Founder, Hortonworks
Hive 3 New Horizons DataWorks Summit Melbourne February 2019alanfgates
Hive 3 new SQL features including LLAP, workload management, SQL over Kafka and JDBC data sources, integration with Spark via Hive Warehouse Connector, ACID 2, and constraints and default values
What's So Unique About a Columnar Database?FlyData Inc.
Looking for the right database technology to use? Luckily there are many database technologies to choose from, including relational databases (MySQL, Postgres), NoSQL (MongoDB), columnar databases (Amazon Redshift, BigQuery), and others. Each choice has its own pros and cons, but today let’s walk through how columnar databases are unique, by comparing it against the more traditional row-oriented database (e.g., MySQL).
Three Things to Consider When Making Investments in Your Big Data InfrastructureFlyData Inc.
Is your company data-driven? Thought so. Data and “data-drivenness” has become so integral to companies’ success nowadays, that it would feel weird to hear somebody say “oh, our company doesn’t care about data”.\r\n\r\nIn fact, it sounds almost as if it’s a crime to disrespect data like that. So, for those of you who want to do the morally right thing and get the most out of your data, let’s go over what you need to consider when making the necessary technology investments to support your data infrastructure.
Biases come in many different forms, but in this article, we’ll touch on few of the major ones that are known to have considerable effects on research and science. Here is a brief list of four cognitive biases that may affect you as a researcher or data scientist.
From wearable computing to heart sensors that send frequent updates to other devices, IoT envisions a future of near-infinite connectivity. In a nutshell, the evolution of technology will bring us to a future where all of our devices will not be just connected to the internet, but to each other.
Near Real-Time Data Analysis With FlyData FlyData Inc.
This document describes our products. FlyData makes it easy to load data automatically and continuously to Amazon Redshift. You can also refer to our HP ( http://flydata.com/ ) for more information.
Douwan Crack 2025 new verson+ License codeaneelaramzan63
Copy & Paste On Google >>> https://dr-up-community.info/
Douwan Preactivated Crack Douwan Crack Free Download. Douwan is a comprehensive software solution designed for data management and analysis.
⭕️➡️ FOR DOWNLOAD LINK : http://drfiles.net/ ⬅️⭕️
Maxon Cinema 4D 2025 is the latest version of the Maxon's 3D software, released in September 2024, and it builds upon previous versions with new tools for procedural modeling and animation, as well as enhancements to particle, Pyro, and rigid body simulations. CG Channel also mentions that Cinema 4D 2025.2, released in April 2025, focuses on spline tools and unified simulation enhancements.
Key improvements and features of Cinema 4D 2025 include:
Procedural Modeling: New tools and workflows for creating models procedurally, including fabric weave and constellation generators.
Procedural Animation: Field Driver tag for procedural animation.
Simulation Enhancements: Improved particle, Pyro, and rigid body simulations.
Spline Tools: Enhanced spline tools for motion graphics and animation, including spline modifiers from Rocket Lasso now included for all subscribers.
Unified Simulation & Particles: Refined physics-based effects and improved particle systems.
Boolean System: Modernized boolean system for precise 3D modeling.
Particle Node Modifier: New particle node modifier for creating particle scenes.
Learning Panel: Intuitive learning panel for new users.
Redshift Integration: Maxon now includes access to the full power of Redshift rendering for all new subscriptions.
In essence, Cinema 4D 2025 is a major update that provides artists with more powerful tools and workflows for creating 3D content, particularly in the fields of motion graphics, VFX, and visualization.
Landscape of Requirements Engineering for/by AI through Literature ReviewHironori Washizaki
Hironori Washizaki, "Landscape of Requirements Engineering for/by AI through Literature Review," RAISE 2025: Workshop on Requirements engineering for AI-powered SoftwarE, 2025.
Explaining GitHub Actions Failures with Large Language Models Challenges, In...ssuserb14185
GitHub Actions (GA) has become the de facto tool that developers use to automate software workflows, seamlessly building, testing, and deploying code. Yet when GA fails, it disrupts development, causing delays and driving up costs. Diagnosing failures becomes especially challenging because error logs are often long, complex and unstructured. Given these difficulties, this study explores the potential of large language models (LLMs) to generate correct, clear, concise, and actionable contextual descriptions (or summaries) for GA failures, focusing on developers’ perceptions of their feasibility and usefulness. Our results show that over 80% of developers rated LLM explanations positively in terms of correctness for simpler/small logs. Overall, our findings suggest that LLMs can feasibly assist developers in understanding common GA errors, thus, potentially reducing manual analysis. However, we also found that improved reasoning abilities are needed to support more complex CI/CD scenarios. For instance, less experienced developers tend to be more positive on the described context, while seasoned developers prefer concise summaries. Overall, our work offers key insights for researchers enhancing LLM reasoning, particularly in adapting explanations to user expertise.
https://arxiv.org/abs/2501.16495
How can one start with crypto wallet development.pptxlaravinson24
This presentation is a beginner-friendly guide to developing a crypto wallet from scratch. It covers essential concepts such as wallet types, blockchain integration, key management, and security best practices. Ideal for developers and tech enthusiasts looking to enter the world of Web3 and decentralized finance.
FL Studio Producer Edition Crack 2025 Full Versiontahirabibi60507
Copy & Past Link 👉👉
http://drfiles.net/
FL Studio is a Digital Audio Workstation (DAW) software used for music production. It's developed by the Belgian company Image-Line. FL Studio allows users to create and edit music using a graphical user interface with a pattern-based music sequencer.
Join Ajay Sarpal and Miray Vu to learn about key Marketo Engage enhancements. Discover improved in-app Salesforce CRM connector statistics for easy monitoring of sync health and throughput. Explore new Salesforce CRM Synch Dashboards providing up-to-date insights into weekly activity usage, thresholds, and limits with drill-down capabilities. Learn about proactive notifications for both Salesforce CRM sync and product usage overages. Get an update on improved Salesforce CRM synch scale and reliability coming in Q2 2025.
Key Takeaways:
Improved Salesforce CRM User Experience: Learn how self-service visibility enhances satisfaction.
Utilize Salesforce CRM Synch Dashboards: Explore real-time weekly activity data.
Monitor Performance Against Limits: See threshold limits for each product level.
Get Usage Over-Limit Alerts: Receive notifications for exceeding thresholds.
Learn About Improved Salesforce CRM Scale: Understand upcoming cloud-based incremental sync.
Adobe Lightroom Classic Crack FREE Latest link 2025kashifyounis067
🌍📱👉COPY LINK & PASTE ON GOOGLE http://drfiles.net/ 👈🌍
Adobe Lightroom Classic is a desktop-based software application for editing and managing digital photos. It focuses on providing users with a powerful and comprehensive set of tools for organizing, editing, and processing their images on their computer. Unlike the newer Lightroom, which is cloud-based, Lightroom Classic stores photos locally on your computer and offers a more traditional workflow for professional photographers.
Here's a more detailed breakdown:
Key Features and Functions:
Organization:
Lightroom Classic provides robust tools for organizing your photos, including creating collections, using keywords, flags, and color labels.
Editing:
It offers a wide range of editing tools for making adjustments to color, tone, and more.
Processing:
Lightroom Classic can process RAW files, allowing for significant adjustments and fine-tuning of images.
Desktop-Focused:
The application is designed to be used on a computer, with the original photos stored locally on the hard drive.
Non-Destructive Editing:
Edits are applied to the original photos in a non-destructive way, meaning the original files remain untouched.
Key Differences from Lightroom (Cloud-Based):
Storage Location:
Lightroom Classic stores photos locally on your computer, while Lightroom stores them in the cloud.
Workflow:
Lightroom Classic is designed for a desktop workflow, while Lightroom is designed for a cloud-based workflow.
Connectivity:
Lightroom Classic can be used offline, while Lightroom requires an internet connection to sync and access photos.
Organization:
Lightroom Classic offers more advanced organization features like Collections and Keywords.
Who is it for?
Professional Photographers:
PCMag notes that Lightroom Classic is a popular choice among professional photographers who need the flexibility and control of a desktop-based application.
Users with Large Collections:
Those with extensive photo collections may prefer Lightroom Classic's local storage and robust organization features.
Users who prefer a traditional workflow:
Users who prefer a more traditional desktop workflow, with their original photos stored on their computer, will find Lightroom Classic a good fit.
How Valletta helped healthcare SaaS to transform QA and compliance to grow wi...Egor Kaleynik
This case study explores how we partnered with a mid-sized U.S. healthcare SaaS provider to help them scale from a successful pilot phase to supporting over 10,000 users—while meeting strict HIPAA compliance requirements.
Faced with slow, manual testing cycles, frequent regression bugs, and looming audit risks, their growth was at risk. Their existing QA processes couldn’t keep up with the complexity of real-time biometric data handling, and earlier automation attempts had failed due to unreliable tools and fragmented workflows.
We stepped in to deliver a full QA and DevOps transformation. Our team replaced their fragile legacy tests with Testim’s self-healing automation, integrated Postman and OWASP ZAP into Jenkins pipelines for continuous API and security validation, and leveraged AWS Device Farm for real-device, region-specific compliance testing. Custom deployment scripts gave them control over rollouts without relying on heavy CI/CD infrastructure.
The result? Test cycle times were reduced from 3 days to just 8 hours, regression bugs dropped by 40%, and they passed their first HIPAA audit without issue—unlocking faster contract signings and enabling them to expand confidently. More than just a technical upgrade, this project embedded compliance into every phase of development, proving that SaaS providers in regulated industries can scale fast and stay secure.
WinRAR Crack for Windows (100% Working 2025)sh607827
copy and past on google ➤ ➤➤ https://hdlicense.org/ddl/
WinRAR Crack Free Download is a powerful archive manager that provides full support for RAR and ZIP archives and decompresses CAB, ARJ, LZH, TAR, GZ, ACE, UUE, .
Copy & Paste On Google >>> https://dr-up-community.info/
EASEUS Partition Master Final with Crack and Key Download If you are looking for a powerful and easy-to-use disk partitioning software,
Microsoft AI Nonprofit Use Cases and Live Demo_2025.04.30.pdfTechSoup
In this webinar we will dive into the essentials of generative AI, address key AI concerns, and demonstrate how nonprofits can benefit from using Microsoft’s AI assistant, Copilot, to achieve their goals.
This event series to help nonprofits obtain Copilot skills is made possible by generous support from Microsoft.
What You’ll Learn in Part 2:
Explore real-world nonprofit use cases and success stories.
Participate in live demonstrations and a hands-on activity to see how you can use Microsoft 365 Copilot in your own work!
🌍📱👉COPY LINK & PASTE ON GOOGLE http://drfiles.net/ 👈🌍
Adobe Illustrator is a powerful, professional-grade vector graphics software used for creating a wide range of designs, including logos, icons, illustrations, and more. Unlike raster graphics (like photos), which are made of pixels, vector graphics in Illustrator are defined by mathematical equations, allowing them to be scaled up or down infinitely without losing quality.
Here's a more detailed explanation:
Key Features and Capabilities:
Vector-Based Design:
Illustrator's foundation is its use of vector graphics, meaning designs are created using paths, lines, shapes, and curves defined mathematically.
Scalability:
This vector-based approach allows for designs to be resized without any loss of resolution or quality, making it suitable for various print and digital applications.
Design Creation:
Illustrator is used for a wide variety of design purposes, including:
Logos and Brand Identity: Creating logos, icons, and other brand assets.
Illustrations: Designing detailed illustrations for books, magazines, web pages, and more.
Marketing Materials: Creating posters, flyers, banners, and other marketing visuals.
Web Design: Designing web graphics, including icons, buttons, and layouts.
Text Handling:
Illustrator offers sophisticated typography tools for manipulating and designing text within your graphics.
Brushes and Effects:
It provides a range of brushes and effects for adding artistic touches and visual styles to your designs.
Integration with Other Adobe Software:
Illustrator integrates seamlessly with other Adobe Creative Cloud apps like Photoshop, InDesign, and Dreamweaver, facilitating a smooth workflow.
Why Use Illustrator?
Professional-Grade Features:
Illustrator offers a comprehensive set of tools and features for professional design work.
Versatility:
It can be used for a wide range of design tasks and applications, making it a versatile tool for designers.
Industry Standard:
Illustrator is a widely used and recognized software in the graphic design industry.
Creative Freedom:
It empowers designers to create detailed, high-quality graphics with a high degree of control and precision.
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...Eric D. Schabell
It's time you stopped letting your telemetry data pressure your budgets and get in the way of solving issues with agility! No more I say! Take back control of your telemetry data as we guide you through the open source project Fluent Bit. Learn how to manage your telemetry data from source to destination using the pipeline phases covering collection, parsing, aggregation, transformation, and forwarding from any source to any destination. Buckle up for a fun ride as you learn by exploring how telemetry pipelines work, how to set up your first pipeline, and exploring several common use cases that Fluent Bit helps solve. All this backed by a self-paced, hands-on workshop that attendees can pursue at home after this session (https://o11y-workshops.gitlab.io/workshop-fluentbit).
Designing AI-Powered APIs on Azure: Best Practices& ConsiderationsDinusha Kumarasiri
AI is transforming APIs, enabling smarter automation, enhanced decision-making, and seamless integrations. This presentation explores key design principles for AI-infused APIs on Azure, covering performance optimization, security best practices, scalability strategies, and responsible AI governance. Learn how to leverage Azure API Management, machine learning models, and cloud-native architectures to build robust, efficient, and intelligent API solutions
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...Andre Hora
Unittest and pytest are the most popular testing frameworks in Python. Overall, pytest provides some advantages, including simpler assertion, reuse of fixtures, and interoperability. Due to such benefits, multiple projects in the Python ecosystem have migrated from unittest to pytest. To facilitate the migration, pytest can also run unittest tests, thus, the migration can happen gradually over time. However, the migration can be timeconsuming and take a long time to conclude. In this context, projects would benefit from automated solutions to support the migration process. In this paper, we propose TestMigrationsInPy, a dataset of test migrations from unittest to pytest. TestMigrationsInPy contains 923 real-world migrations performed by developers. Future research proposing novel solutions to migrate frameworks in Python can rely on TestMigrationsInPy as a ground truth. Moreover, as TestMigrationsInPy includes information about the migration type (e.g., changes in assertions or fixtures), our dataset enables novel solutions to be verified effectively, for instance, from simpler assertion migrations to more complex fixture migrations. TestMigrationsInPy is publicly available at: https://github.com/altinoalvesjunior/TestMigrationsInPy.
AgentExchange is Salesforce’s latest innovation, expanding upon the foundation of AppExchange by offering a centralized marketplace for AI-powered digital labor. Designed for Agentblazers, developers, and Salesforce admins, this platform enables the rapid development and deployment of AI agents across industries.
Email: [email protected]
Phone: +1(630) 349 2411
Website: https://www.fexle.com/blogs/agentexchange-an-ultimate-guide-for-salesforce-consultants-businesses/?utm_source=slideshare&utm_medium=pptNg
Why Orangescrum Is a Game Changer for Construction Companies in 2025Orangescrum
Orangescrum revolutionizes construction project management in 2025 with real-time collaboration, resource planning, task tracking, and workflow automation, boosting efficiency, transparency, and on-time project delivery.
11. www.flydata.com www.flydata.com
Check us out!
-> http://flydata.com
[email protected]
Toll Free: 1-855-427-9787
http://flydata.com
We are an official data integration
partner of Amazon Redshift