SlideShare a Scribd company logo
WEB OF DATA &
SEMANTIC WEB
LINKING DATA AND THEIR
SCHEMAS AROUND THE
WORLD.
Fabien GANDON, @fabien_gandon http://fabien.info
   
WIMMICS TEAM
 Inria
 CNRS
 University of Nice
Inria Lille - Nord Europe (2008)
Inria Saclay – Ile-de-France
(2008)
Inria Nancy – Grand Est
(1986)
Inria Grenoble – Rhône-
Alpes (1992)
Inria Sophia Antipolis Méditerranée (1983)
Inria Bordeaux
Sud-Ouest (2008)
Inria Rennes
Bretagne
Atlantique
(1980)
Inria Paris-Rocquencourt
(1967)
Montpellier
Lyon
Nantes
Strasbourg
Center
Branch
Pau
I3S
Web-Instrumented Man-Machine Interactions,
Communities and Semantics
MULTI-DISCIPLINARY TEAM
 41 members 2016, 50 in 2015
 14 nationalities
 1 DR, 3 Professors
 3CR, 4 Assistant professors
 1 SRP
DR/Professors:
 Fabien GANDON, Inria, AI, KR, Semantic Web, Social Web
 Nhan LE THANH, UNS, Logics, KR, Emotions
 Peter SANDER, UNS, Web, Emotions
 Andrea TETTAMANZI, UNS, AI, Logics, Agents,
CR/Assistant Professors:
 Michel BUFFA, UNS, Web, Social Media
 Elena CABRIO, UNS, NLP, KR, Linguistics
 Olivier CORBY, Inria, KR, AI, Sem. Web, Programming, Graphs
 Catherine FARON-ZUCKER, UNS, KR, AI, Semantic Web, Graphs
 Alain GIBOIN, Inria, Interaction Design, KE, User & Task models
 Isabelle MIRBEL, UNS, Requirements, Communities
 Serena VILLATA, CNRS, AI, Argumentation, Licenses, Rights
Inria Starting Position: Alexandre MONNIN, Philosophy, Web
SCENARIO
epistemic
communities
CHALLENGE
to bridge social semantics and
formal semantics on the Web
WEB GRAPHS
(meta)data of
the relations
and the
resources of the
web
…sites …social …of data …of services
+ + + +…
web…
= +
…semantics
+ + + +…= +
typed
graphs
web
(graphs)
networks
(graphs)
linked data
(graphs)
workflows
(graphs)
schemas
(graphs)
CHALLENGES
typed graphs to analyze,
model, formalize and
implement social semantic
web applications for
epistemic communities
 multidisciplinary approach for analyzing and modeling
the many aspects of intertwined information systems
communities of users and their interactions
 formalizing and reasoning on these models using typed graphs
new analysis tools and indicators
new functionalities and better management
Previously on… the Web
9
extending human memory
Vannevar Bush
Memex, Life Magazine,
10/09/1945
10
hypermedia structure
Vannevar Bush
Memex, Life Magazine,
10/09/1945
Ted Nelson
HyperText, ACM
1965
11
human-computer interaction
Vannevar Bush
Memex, Life Magazine,
10/09/1945
Douglas Engelbart
Augment, Mouse, HCI,
1968
Ted Nelson
HyperText, ACM
1965
12
inter-networking
Vannevar Bush
Memex, Life Magazine,
10/09/1945
Douglas Engelbart
Augment, Mouse, HCI,
1968
Ted Nelson
HyperText, ACM
1965
Vinton Cerf
TCP/IP, Internet
1974
13
identify and link across networks
Vannevar Bush
Memex, Life Magazine,
10/09/1945
Information Management:
A Proposal CERN, 1989
Tim Berners-LeeDouglas Engelbart
Augment, Mouse, HCI,
1968
Ted Nelson
HyperText, ACM
1965
Vinton Cerf
TCP/IP, Internet
1974
HISTORY
linking everything…
architecture of the Web
23
three components of the Web architecture
1. identification (URI) & address (URL)
ex. http://www.inria.fr
URL
24
three components of the Web architecture
1. identification (URI) & address (URL)
ex. http://www.inria.fr
2. communication / protocol (HTTP)
GET /centre/sophia HTTP/1.1
Host: www.inria.fr
HTTP
URL
address
25
three components of the Web architecture
1. identification (URI) & address (URL)
ex. http://www.inria.fr
2. communication / protocol (HTTP)
GET /centre/sophia HTTP/1.1
Host: www.inria.fr
3. representation language (HTML)
Fabien works at
<a href="http://inria.fr">Inria</a>
HTTP
URL
HTML
reference address
communication
WEB
identifying shadows on the Web
27
multiplying references to the Web
HTTP
URL
HTML
reference address
communication
WEB
identify what
exists on the
web
http://my-site.fr
identify,
on the web, what
exists
http://animals.org/this-zebra
UR Identitye.g. http://ns.inria.fr/fabien.gandon#me
Car configurations as linked data
1025 car configurations but only 1020 coherent (1/100 000)
from [François-Paul Servant et al. ESWC 2012]
1 (partial) Configuration = 1 URI
every possible state on the Web
publish data and computations
CONSTRAINTS
[Servant et al. 2012]
34
W3C standards
HTTP
URI
HTML
reference address
communication
WEB
universal nodes and types
identification
linking open data
36
Beyond Documentary Representations
HTTP
URI
reference address
communication
WEB
HTTP
URI
HTML
reference address
communication
WEB
37
pieces of a world-wide graph
HTTP
URI
reference address
communication
WEB
HTTP
URI
HTML
reference address
communication
WEB
RDF
38
a Web approach to data publication
???...« http://fr.dbpedia.org/resource/Paris »
39
a Web approach to data publication
HTTP URI
GET
40
a Web approach to data publication
HTTP URI
GET
HTML, …
41
a Web approach to data publication
HTTP URI
GET
HTML,RDF, XML,…
42
linked data
a recipe to link data on the Web
44
ratatouille.fr
or the recipe for linked data
45
ratatouille.fr
or the recipe for linked data
46
ratatouille.fr
or the recipe for linked data
47
ratatouille.fr
or the recipe for linked data
48
datatouille.fr
or the recipe for linked data
49
linked open data(sets) cloud on the Web
0
200
400
600
800
1000
1200
1400
01/05/2007 08/10/2007 07/11/2007 10/11/2007 28/02/2008 31/03/2008 18/09/2008 05/03/2009 27/03/2009 14/07/2009 22/09/2010 19/09/2011 30/08/2014 26/01/2017
number of linked open datasets on the Web
LOD cloud
http://lod-cloud.net/
BBC
(semantic) Web site
52
a Web graph data model
HTTP
URI
RDF
reference address
communication
Web of
data
universal
graph data
model
53
"Music"
RDFis a model for directed labeled multigraphs
http://inria.fr/rr/doc.html
http://ns.inria.fr/fabien.gandon#me
http://inria.fr/schema#author
http://inria.fr/schema#topic
http://inria.fr/rr/doc.html
http://inria.fr/schema#keyword
GLOBAL GIANT GRAPH
of linked (open) data on the Web
RESEARCH QUESTIONS
 Crawling, collecting, indexing
 Scalability of storage, server, etc.
 Modularization
 Models and syntaxes (efficient, canonical, etc.)
 Version management, long term preservation
 Validation, transformation
 Linking, named entity recognition,
 Human-Data Interaction (visualize, browse,
search, access, create, contribute, update,
curate,)
 Social, collective, collaborative interaction
SPOTLIGHT
named entity
57
query data sources on the Web
URI
reference address
communication
WEB
RDFHTTP
URI
reference address
communication
WEB
RDF
58
a Web graph access
HTTP
URI
RDF
reference address
communication
Web of
data
59
Get Data, Not Documents
ex. DBpedia
RESEARCH QUESTIONS
 Efficiency storage and querying
 Efficient network access means: HTTP gets,
Linked Data Fragments, Linked Data
Platform (REST), SPARQL services, protocol
and language
 Distribution, federation and hybridization
 Operations on flows
 Dedicated graph operators (e.g. paths)
 Reliable, persistent, trustworthy
 Access control, (homomorphic) encryption,
compression
ADDING SEMANTICS WITH VOCABULARIES
62
infer, reason, with semantics
URI
reference address
communication
WEB
RDF
URI
reference address
communication
WEB
RDF
RDFS
OWL
63
HTTP
URI
RDFS
OWL
reference address
communication
web of
data
Web ontology languages
64
RDFS to declare classes of resources,
properties, and organize their hierarchy
Document
Report
creator
author
Document Person
65
OWL in one…
algebraic properties
disjoint properties
qualified cardinality
1..1
!
individual prop. neg
chained prop.


enumeration
intersection
union
complement
 disjunction
restriction!
cardinality
1..1
equivalence
[>18]
disjoint union
value restriction
keys
…
SKOS
thesaurus, lexicon
skos:narrowerTransitive
skos:narrower
skos:broaderTransitive
skos:broader
#Algebra#Mathematics #LinearAlgebra
broader
narrower
broader
narrower
broaderTransitive broaderTransitive
narrowerTransitive narrowerTransitive
broaderTransitive
narrowerTransitive
LOV.OKFN.ORG
Web directory of
vocabularies/schemas/
ontologies
RESEARCH QUESTIONS
 Expressivity, complexity, decidability, completeness
 Schemas validation, verification
 Intelligent processing : classical, reasoning, deontic
reasoning, induction, machine learning, data
mining
 Hybrid approaches (e.g. reasoning and ML)
 Open world assumption (OWA)
 Scaling, approximating and distributing reasoning
 Heterogeneity
 Alignment of resources and vocabularies
 Uncertainty, data quality, data and processing
traceability
 Extraction, learning, mining, etc. of data and
vocabularies
69
data traceability & trust
70
PROV-O: vocabulary for provenance and traceability
describe entities and activities involved in providing a resource
RESEARCH CHALLENGES
METHODS AND TOOLS
1. user & interaction design

METHODS AND TOOLS
1. user & interaction design
2. communities & social medias


METHODS AND TOOLS
1. user & interaction design
2. communities & social medias
3. linked data & semantic Web



METHODS AND TOOLS
1. user & interaction design
2. communities & social medias
3. linked data & semantic Web
4. reasoning & analyzing





G2 H2

G1 H1
<
Gn Hn
RESEARCH CHALLENGES
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning & analyzing
How do we improve our interactions with a
semantic and social Web ?
• capture and model the users' characteristics?
• represent and reason with the users’ profiles?
• adapt the system behaviors as a result?
• design new interaction means?
• evaluate the quality of the interaction designed?

RESEARCH CHALLENGES
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning & analyzing
How can we manage the collective activity on social
media?
• analyze the social interaction practices and the
structures in which these practices take place?
• capture the social interactions and structures?
• formalize the models of these social constructs?
• analyze & reason on these models of social activity?

RESEARCH CHALLENGES
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning & analyzing
What are the needed schemas and extensions of
the semantic Web formalisms for our models?
• formalisms best suited for the models of the
challenges 1 & 2 ?
• limitations and extensions of existing formalisms?
• missing schemas, ontologies, vocabularies?
• links and combinations of existing formalisms?

RESEARCH CHALLENGES
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning & analyzing
What are the algorithms required to analyze and
reason on the heterogeneous graphs we obtained?
• analyze graphs of different types and their
interactions?
• support different graph life-cycles, calculations and
characteristics?
• assist different tasks of our users?
• design the Web architecture to deploy this?

METHODS AND TOOLS
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning & analyzing





G2 H2

G1 H1
<
Gn Hn
METHODS AND TOOLS
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning & analyzing
 • KB interaction (context, Q&A, exploration, …)
• user models, personas, emotion capture
• mockups, evaluation campaigns




G2 H2

G1 H1
<
Gn Hn
METHODS AND TOOLS
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning & analyzing


• KB interaction (context, Q&A, exploration, …)
• user models, personas, emotion capture
• mockups, evaluation campaigns
• community detection, labelling
• collective personas, coordinative artifacts
• argumentation theory, sentiment analysis



G2 H2

G1 H1
<
Gn Hn
METHODS AND TOOLS
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning & analyzing



• KB interaction (context, Q&A, exploration, …)
• user models, personas, emotion capture
• mockups, evaluation campaigns
• community detection, labelling
• collective personas, coordinative artifacts
• argumentation theory, sentiment analysis
• ontology-based knowledge representation
• formalisms: typed graphs, uncertainty
• knowledge extraction, data translation


G2 H2

G1 H1
<
Gn Hn
METHODS AND TOOLS
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning & analyzing




• KB interaction (context, Q&A, exploration, …)
• user models, personas, emotion capture
• mockups, evaluation campaigns
• community detection, labelling
• collective personas, coordinative artifacts
• argumentation theory, sentiment analysis
• ontology-based knowledge representation
• formalisms: typed graphs, uncertainty
• knowledge extraction, data translation
• graph querying, reasoning, transforming
• induction, propagation, approximation
• explanation, tracing, control, licensing, trust
e.g. cultural data is a weapon of mass construction
PUBLISHING
 extract data (content, activity…)
 provide them as linked data
DBPEDIA.FR (extraction, end-point)
180 000 000 triples
models
Web architecture
[Cojan, Boyer et al.]
PUBLISHING
DBpedia.fr usage
number of queries per day
70 000 on average
2.5 millions max
185 377 686 RDF triples extracted and mapped
public dumps, endpoints, interfaces, APIs…
PUBLISHING
DBpedia.fr active since
2012
REUSE
 build and help build applications DBPEDIA.FR (extraction, end-point)
180 000 000 triples
Zone 47
BBC
HdA Lab
DiscoveryHub.co
Wimmics Research Team Overview 2017
James Bridle’s twelve-volume encyclopedia of all
changes to the Wikipedia article on the Iraq War
booktwo.org
HISTORIC
for each page & edition
EXTRACTED
entire edition history as
linked open data
1.9 billion triples describing the 107 million revisions since the first page was created
<http://fr.wikipedia.org/wiki/Victor_Hugo> a prov:Revision ;
dc:subject <http://fr.dbpedia.org/resource/Victor_Hugo> ;
swp:isVersion "3496"^^xsd:integer ;
dc:created "2002-06-06T08:48:32"^^xsd:dateTime ;
dc:modified "2015-10-15T14:17:02"^^xsd:dateTime ;
dbfr:uniqueContributorNb 1295 ;
(...)
dbfr:revPerYear [ dc:date "2015"^^xsd:gYear ; rdf:value
"79"^^xsd:integer ] ;
dbfr:revPerMonth [ dc:date "06/2002"^^xsd:gYearMonth ;
rdf:value "3"^^xsd:integer ] ;
(...)
dbfr:averageSizePerYear [ dc:date "2015"^^xsd:gYear ;
rdf:value "154110.18"^^xsd:float
] ;
dbfr:averageSizePerMonth [ dc:date
"06/2002"^^xsd:gYearMonth ;
rdf:value "2610.66"^^xsd:float ]
;
(...)
dbfr:size "159049"^^xsd:integer ;
dc:creator [ foaf:nick "Rinaldum" ] ;
sioc:note "wikification"^^xsd:string ;
prov:wasRevisionOf <http:// … 119074391> ;
prov:wasAttributedTo [ foaf:name "Rémih" ; a prov:Person,
foaf:Person ] .
<http:// … 119074391> a prov:Revision ;
dc:created "2015-09-29T19:35:34"^^xsd:dateTime ;
dbfr:size "159034"^^xsd:integer ;
dbfr:sizeNewDifference "-5"^^xsd:integer ;
sioc:note "/*Années théâtre*/ neutralisation"^^xsd:string ;
prov:wasAttributedTo [ foaf:name "Thouny" ; a prov:Person,
foaf:Person ] ;
prov:wasRevisionOf <http://... 118903583> .
(...)
<http:// … oldid=118201419> a prov:Revision ;
prov:wasAttributedTo [ foaf:name "OrlodrimBot" ; a
prov:SoftwareAgent ] ;
(...)
[Gandon, Boyer, Corby, Monnin 2016]
DEMO
Facetted history portals
Elections
in France
DEMO
Facetted history portals
Elections
in France
Death of
C. Lee
DEMO
Facetted history portals
Elections
in France
Death of
C. Lee
Events in
Ukraine
DBPEDIA & STTL
declarative transformation
language from RDF to text
formats (XML, JSON, HTML,
Latex, natural language, GML,
…) [Cojan, Corby, Faron-Zucker et al.]
more data, more usages, more users
ADAPTING TO USERS
e.g. e-learning & serious games
[Rodriguez-Rocha, Faron-Zucker et al.]
LUDO: ontological modeling of serious games
Learning
Game KB
Player’s profile &
context
Game design
[Rodriguez-Rocha, Faron-Zucker et al.]
DOCS & TOPICS
link topics, questions, docs,
[Dehors, Faron-Zucker et al.]
MONITORING
e.g. progress of learners
[Dehors, Faron-Zucker et al.]
EDUMICS
 Ontology EduProgression: OWL modeling of scholar program
 Ontology RefEduclever: new education referential for Educlever
 Migration and persistence in graph databases
 Reasoning, query, interactions, recommendation
[Fokou, Faron et al. 2017]
MOOC
[Gandon, Corby, Faron-Zucker]
WASABI
augmenting musical
experience with the Web
[Buffa, Jauva et al.]
NLP & LOD & Lyrics
ZOOMATHIA
Cultural transmission of
zoological knowledge
from Antiquity
to Middle Age
[Faron Zucker, et al.]
SCIENTIFIC HERITAGE
 TAXREF Vocabulary
 Data extraction and
publication
[Tounsi, Callou, Michel, Pajo, Faron Zucker et al.]
“
Smarter Cities – IBM Dublin
[Lécué, 2015]
“searching” comes in many flavors
SEARCHING
 exploratory search
 question-answering
DBPEDIA.FR (extraction, end-point)
180 000 000 triples
[Cojan, Boyer et al.]
SEARCHING
 exploratory search
 question-answering
DBPEDIA.FR (extraction, end-point)
180 000 000 triples
DISCOVERYHUB.CO
semantic spreading
activation
new evaluation protocol
[Marie, Giboin, Palagi et al.]
[Cojan, Boyer et al.]
SEARCHING
 exploratory search
 question-answering
DBPEDIA.FR (extraction, end-point)
180 000 000 triples
DISCOVERYHUB.CO
semantic spreading
activation
new evaluation protocol
[D:Work], played by [R:Person]
[D:Work] stars [R:Person]
[D:Work] film stars [R:Person]
starring(Work, Person)
linguistic relational
pattern extraction
named entity recognition
similarity based SPARQL
generation
select * where {
dbpr:Batman_Begins dbp:starring ?v .
OPTIONAL {?v rdfs:label ?l
filter(lang(?l)="en")} }
[Cabrio et al.]
[Marie, Giboin, Palagi et al.]
[Cojan, Boyer et al.]
QAKiS.ORG
SEARCHING
e.g. QAKIS
question-answering
learning linguistic patterns of queries
MULTIMEDIA
answer visualization
through linked data
BROWSING
e.g. SMILK plugin
[Lopez, Cabrio, et al.]
BROWSING
e.g. SMILK plugin
[Nooralahzadeh, Cabrio, et al.]
QUESTION ROUTING
 emails to the customer service (eg 350000/day “Crédit Mutuel”)
 detect topics in order to “understand” a question
 3 humans annotate 142 questions (Krippendorff’s Alpha 0,70)
 NLP and semantic processing for features extraction
 ML performance comparison for question classification
Naive Bayes, Sequential Minimal Optimisation (SMO),
Random Forest, RAndom k-labELsets (RAkEL)
[Gazzotti, et al. 2017]
NE
recognition
(L,T)
Removing
special
characters
Tokenization
(L,T)
Spell
Checking
(L,T)
Lemmatization
(L)
Vector
generation
BOW/N-gram
Replacement in documents
Consider as feature
Input
Document
ML
workflow
L: Language dependent - T: Text dependent
Unbalanced Topics
Metrics uni uni⨁bi uni+bi+tri uni⨁NE syn syn⨁hyper syn⨁NE
Hamming
Loss
0,0381 0,0370 0,0374 0,0373 0,0399 0,0412 0,0405
SEARCHING
e.g. DiscoveryHub
exploratory search
semantic spreading activation
SIMILARITY
FILTERING
discoveryhub.co
CONVERGING
answer visualization
through linked data
Wimmics Research Team Overview 2017
SEARCHING
e.g. DiscoveryHub
exploratory search
relevant
not known
known
not relevant
EVALUATING
user-centric studies
INTERACTION
design and evaluation
Favoris
Nouvelle recherche TEMPS
Debut test Free Jazz 24s
Free improvisation 33s
(fiche) Avant-garde 47s
John Coltrane (vidéo) 1min 28
Marc Ribot 2min11
(fiche) experimental music 2min18 2min23
Krautrock 2min31
(fiche) Progressive rock 2min37 2min39
Red (King Crimson album) 2m52 2min59
King
Crimson 3min05
(fiche) Jazz fusion 3min18
(fiche) Free Jazz 3min32 3min54
Sun Ra 4min18
(fiche) Hard bop 4min41 4min47
Charles
Mingus (vidéo) 5min29
(fiche) Third Stream (vidéo) 6min20
Bebop 7min19
Modal jazz 7min26
(fiche) Saxophone 7min51 7min55
Mel Collins
21st Century Schizoid Band
Crimson Jazz Trio
(fiche)
King
Crimson
(fiche)
Robert
Fripp
Miles Davis
Thelonious Monk
(fiche) Blue Note Record
McCoy Tyner
(fiche) Modal Jazz
(fiche) Jazz
Chick Corea
(fiche) Jazz Fusion
Return to Forever
Mahavishnu Orchestra
Shakti (band)
U.Srinivas
Bela Fleck
Flecktones
John McLaughlin (musician)
Dixie Dregs
FICHE Dixie Degs
T Lavitz
Jordan Rudess
Behold… The Arctopus
(fiche) Avant-garde metal
Unexpected
FICHE unexpected
Dream Theater
King
Crimson
(fiche) Jazz fusion
King
Crimson
Tony Levin
(fiche) Anderson Bruford Wakeman Howe
(fiche) Rike Wakeman (vidéo)
Fin test
[Palagi, Marie, Giboin et al.]
(RE)DESIGN
interface evolutions
[Palagi, Marie, Giboin et al.]
METHODS & CRITERIA
 design and evaluation criteria
 exploratory search process model
[Palagi, Giboin et al. 2017]
A. Define the search space
B. Query (re)formulation
C. Information gathering
D. Put some information aside
E. Pinpoint search
F. Change of goal(s)
G. Backward/forward steps
H. Browsing results
I. Results analysis
J. Stop the search session
Previous features Feature Next features
NA A B ; J
A ; F B G ; H ; I ; J
D ; E ; I C D ; E ; F ; G ; H ; J
E ; I D C ; F ; G ; J
G ; H ; I E C ; D ; F ; G ; J
C ; D ; E ; G ; H ; I F B ; H ; I ; J
B ; D ; E ; H ; I G E ; F ; H ; I ; J
B ; F ; G ; I H E ; F ; G ; ; I ; J
B ; F ; G ; H I C ; D ; E ; F ; G ; H ; J
all J NA
MODELING USERS
 individual context
 social structures
PRISSMA
prissma:Context
0 48.86034
-2.337599
200
geo:lat
geo:lon
prissma:radius
1
:museumGeo
prissma:Environment
2
{ 3, 1, 2, { pr i ssma: poi } }
{ 4, 0, 3, { pr i ssma: envi r onment } }
:atTheMuseum
error tolerant graph
edit distance
context
ontology
[Costabello et al.]
MODELING USERS
 individual context
 social structures
PRISSMA
prissma:Context
0 48.86034
-2.337599
200
geo:lat
geo:lon
prissma:radius
1
:museumGeo
prissma:Environment
2
{ 3, 1, 2, { pr i ssma: poi } }
{ 4, 0, 3, { pr i ssma: envi r onment } }
:atTheMuseum
error tolerant graph
edit distance
context
ontology
OCKTOPUS
tag, topic, user
distribution
tag and folksonomy
restructuring with
prefix trees
[Costabello et al.]
[Meng et al.]
MODELING USERS
 individual context
 social structures
PRISSMA
prissma:Context
0 48.86034
-2.337599
200
geo:lat
geo:lon
prissma:radius
1
:museumGeo
prissma:Environment
2
{ 3, 1, 2, { pr i ssma: poi } }
{ 4, 0, 3, { pr i ssma: envi r onment } }
:atTheMuseum
error tolerant graph
edit distance
context
ontology
OCKTOPUS
tag, topic, user
distribution
tag and folksonomy
restructuring with
prefix trees
EMOCA&SEEMPAD
emotion detection & annotation
[Villata, Cabrio et al.]
[Costabello et al.]
[Meng et al.]
DEBATES & EMOTIONS
#IRC
DEBATES & EMOTIONS
#IRC argument rejection
attacks-disgust
OPINIONS
NLP, ML and arguments
[Villata, Cabrio, et al.]
Web-augmented interactions
“
« a Web-Augmented Interaction (WAI)
is a user’s interaction with a system
that is improved by allowing the
system to access Web resources »
[Gandon, Giboin, WebSci17]
ALOOF: Web and Perception
[Cabrio, Basile et al.]
Semantic Web-Mining and Deep Vision for Lifelong Object Discovery (ICRA 2017)
Making Sense of Indoor Spaces using Semantic Web Mining and Situated Robot Perception (AnSWeR 2017)
ALOOF: robots learning by reading on the Web
Annie cuts the bread in the kitchen with her knife dbp:Knife aloof:Location dbp:Kitchen
[Cabrio, Basile et al.]
ALOOF: robots learning by reading on the Web
 First Object Relation Knowledge Base:
46212 co-mentions, 49 tools, 14 rooms,
101 “possible location” relations,
696 tuples <entity, relation, frame>
 Evaluation: 100 domestic implements,
20 rooms, 2000 crowdsourcing
judgements
 Object co-occurrence for coherence
building
Annie cuts the bread in the kitchen with her knife dbp:Knife aloof:Location dbp:Kitchen
[Cabrio, Basile et al.]
ALOOF: RDF dataset about objects
[Cabrio, Basile et al.]
 common sense knowledge about objects: classification, prototypical locations
and actions
 knowledge extracted from natural language parsing, crowdsourcing,
distributional semantics, keyword linking, ...
AZKAR
remotely visit and interact
with a museum through a
robot and via the Web
[Buffa et al.]
Wimmics Research Team Overview 2017
QUERY & INFER
 graph rules and queries
 deontic reasoning
 induction
CORESE
 &
G2 H2
 &
G1 H1
<
Gn Hn
abstract graph machine
STTL
[Corby, Faron-Zucker et al.]
QUERY & INFER
 graph rules and queries
 deontic reasoning
 induction
CORESE
 &
G2 H2
 &
G1 H1
<
Gn Hn
RATIO4TA
predict &
explain
abstract graph machine
STTL
[Hasan et al.]
[Corby, Faron-Zucker et al.]
QUERY & INFER
 graph rules and queries
 deontic reasoning
 induction
CORESE
INDUCTION
 &
G2 H2
 &
G1 H1
<
Gn Hn
RATIO4TA
predict &
explain
find missing
knowledge
abstract graph machine
STTL
[Hasan et al.]
[Tettamanzietal.]
[Corby, Faron-Zucker et al.]
QUERY & INFER
 graph rules and queries
 deontic reasoning
 induction
CORESE
LICENTIA
INDUCTION
 &
G2 H2
 &
G1 H1
<
Gn Hn
RATIO4TA
predict &
explain
find missing
knowledge
deontic reasoning, license
compatibility and composition
abstract graph machine
STTL
[Hasan et al.]
[Tettamanzietal.]
[Villata et al.]
[Corby, Faron-Zucker et al.]
QUERY & INFER
e.g. CORESE/KGRAM
[Corby et al.]
FO  R  GF  GR
mapping modulo an ontology
car
vehicle
car(x)vehicle(x)
GF
GR
vehicle
car
O
RIF-BLD SPARQL RIFSPARQL
?x ?x
C C
List(T1. . . Tn) (T1’. . . Tn’)
OpenList(T1. . . Tn T)
External(op((T1. . . Tn))) Filter(op’ (T1’. . . Tn’))
T1 = T2 Filter(T1’ =T2’)
X # C X’ rdf:type C’
T1 ## T2 T1’ rdfs:subClassOf T2’
C(A1 ->V1 . . .An ->Vn)
C(T1 . . . Tn)
AND(A1. . . An) A1’. . . An’
Or(A1. . . An) {A1’} …UNION {An’}
OPTIONAL{B}
Exists ?x1 . . . ?xn (A) A’
Forall ?x1 . . . ?xn (H)
Forall ?x1 . . . ?xn (H:- B) CONSTRUCT { H’}
WHERE{ B’}
restrictions
equivalence no equivalence
extensions
FO  R  GF  GR
mapping modulo an ontology
car
vehicle
car(x)vehicle(x)
GF
GR
vehicle
car
O
truck
car
   




121 ,, )(2121
2
21
2
1
),(let;),( ttttt tdepthHc ttlttHtt c
  ),(),(min),(let),( 21,21
2
21 21
ttlttlttdistHtt cc HHttttc  
vehicle
car
O
truck
t1(x)t2(x)  d(t1,t2)< threshold
LDSCRIPT
a Linked Data Script Language
FUNCTION us:status(?x) {
IF (EXISTS { ?x ex:hasSpouse ?y }||EXISTS { ?y ex:hasSpouse ?x },
ex:Married, ex:Single) }
[Corby, Faron Zucker, Gandon, ISWC 2017]
DISTRIBUTED
inductive index creation for a
triple store [Basse, Gandon, Mirbel]
DISTRIBUTED
Querying heterogeneous and
distributed data [Gaignard,Corby et al.]
rr:objectMap
1
1
0-1
0-1
1
0-1
0-1
0-1
0-1
1
1
rr:GraphMaprr:graphMap
0-1
xrr:logicalSource
xrr:LogicalSource
xrr:query
Query String
rml:iterator Iteration pattern
rr:IRI, rr:BlankNode, rr:Literal,
xrr:RdfList, xrr:RdfBag,
xrr:RdfSeq, xrr:RdfAlt
reference expr.
xrr:nestedTermMap
xrr:NestedTermMap
rr:inverseExrpression
xrr:reference
reference expr.
reference expr.
rr:ObjectMap
HETEROGENEITY
xR2RML mapping language
and SPARQL query rewriting
[Michel et al.]
<AbstractQuery> ::= <AtomicQuery> | <Query> |
<Query> FILTER <SPARQL filter> | <Query> LIMIT <integer>
<Query> ::= <AbstractQuery> INNER JOIN <AbstractQuery> ON {v1, … vn} |
<AtomicQuery> AS child INNER JOIN <AtomicQuery> AS parent
ON child/<Ref> = parent/<Ref> |
<AbstractQuery> LEFT OUTER JOIN <AbstractQuery> ON {v1, … vn} |
<AbstractQuery> UNION <AbstractQuery>
<AtomicQuery> ::= {From, Project, Where, Limit}
<Ref> ::= a valid xR2RML data element reference
QUERY & INFER
e.g. Gephi+CORESE/KGRAM
http://drunks-and-lampposts.com/2012/06/13/graphing-the-history-of-philosophy/
http://blog.ouseful.info/2012/07/03/mapping-how-programming-languages-influenced-each-other-according-to-wikipedia/
http://blog.ouseful.info/2012/07/04/mapping-related-musical-genres-on-wikipediadbpedia-with-gephi/
explore different domains
EXPLAIN
 justify results
 predict performances
[Hasan et al.]
EXPLAIN
 justify results
 predict performances
[Hasan et al.]
INDUCTION
learning axioms from linked
data on the Web [Tettamanzi et al.]
DISCOVERING ASSOCIATION RULES
[Tran, Tettamanzi, 2017]
isParent(x, y) ⇐ isFather(x, y)
isParent(x, y) ⇐ isMother(x, y)
Rules induced by (Facts1 ∪ Facts2)
isMother(Maria, Anna)
isMother(Maria, Alli)
isFather(Carlos, Anna)
isFathe(Carlos, Alli)
isParent(Maria, Anna)
isParent(Maria, Alli)
isParent(Carlos, Anna)
isParent(Carlos, Alli)
DISCOVERING ASSOCIATION RULES
 Discovering Multi-Relational Association Rules in the
Semantic Web
 Inductive Logic Programming (ILP)
= Logic Programming ∩ Machine Learning
 Learning logic rules from examples and background knowledge
 Evolutionary approach (genetic algo)
[Tran, Tettamanzi, 2017]
H1 ∧ ... ∧ Hm ⇐ B1 ∧ B2 ∧ ... Bn
DISTRIBUTED AI
 Agent-based Simulation for a Multi-context
BDI Recommender
 Solitary agents vs social agents: social
agents have better performance than
solitary ones
 Trust/Distrust score to detect malicious
agents
 Possibility theory is an uncertainty theory
dedicated to handle incomplete information
[Ben Othmane, Tettamanzi, Serena Villata et al. 2017]
QUERY & INFER
e.g. Licencia
[Villata et al.]
DEONTICS
Legal Rules on the Semantic Web
OWL + Named Graphs + SPARQL Rules
Named Graph (state of affair) Subject Predicate Object
http://ns.inria.fr/nrv-inst#StateOfAffairs1 Tom http://ns.inria.fr/nrv-inst#activity driving at 100km/h
http://ns.inria.fr/nrv-inst#StateOfAffairs1 Tom http://www.w3.org/2000/01/rdf-schema#label Tom
http://ns.inria.fr/nrv-inst#StateOfAffairs1 can't drive over 90km http://www.w3.org/1999/02/22-rdf-syntax-ns#type violated requirement
http://ns.inria.fr/nrv-inst#StateOfAffairs1 can't drive over 90km has for violation http://ns.inria.fr/nrv-inst#StateOfAffairs1
http://ns.inria.fr/nrv-inst#StateOfAffairs1 driving at 100km/h http://ns.inria.fr/nrv-inst#speed 100
http://ns.inria.fr/nrv-inst#StateOfAffairs1 driving at 100km/h http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://ns.inria.fr/nrv-inst#Driving
http://ns.inria.fr/nrv-inst#StateOfAffairs1 driving at 100km/h http://www.w3.org/2000/01/rdf-schema#label "driving at 100km/h"@en
Named Graph (state of affair) Subject Predicate Object
http://ns.inria.fr/nrv-inst#StateOfAffairs2 Jim http://ns.inria.fr/nrv-inst#activity driving at 90km/h
http://ns.inria.fr/nrv-inst#StateOfAffairs2 Jim http://www.w3.org/2000/01/rdf-schema#label Jim
http://ns.inria.fr/nrv-inst#StateOfAffairs2 can't drive over 90km http://www.w3.org/1999/02/22-rdf-syntax-ns#type compliant requirement
http://ns.inria.fr/nrv-inst#StateOfAffairs2 can't drive over 90km has for compliance http://ns.inria.fr/nrv-inst#StateOfAffairs2
http://ns.inria.fr/nrv-inst#StateOfAffairs2 driving at 90km/h http://ns.inria.fr/nrv-inst#speed 90
http://ns.inria.fr/nrv-inst#StateOfAffairs2 driving at 90km/h http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://ns.inria.fr/nrv-inst#Driving
http://ns.inria.fr/nrv-inst#StateOfAffairs2 driving at 90km/h http://www.w3.org/2000/01/rdf-schema#label "driving at 90km/h"@en
171
cooperative company, spin-off wimmics
Xxxx
xxxx
Xxxx
xxxx
x
xxxx
xxxx
x
xxxx
Xxxx
xx
xxxx
x
Xxxxxx
xxxxxx
xxxxxxXxxxxx
xxxxxx
xxxxxx
Xxxxxx
xxxxxx
xxxxxx
contribute
Xxxxxx
xxxxxx
xxxxxx
contributes
exhange
Xxxxxx
xxxxxx
xxxxxx
Xxxxxx
xxxxxx
xxxxxx
link, enrich
analyze, assist
integrate to IS, intelligence, enterprise social medias
Wimmics Research Team Overview 2017
“
«If you are not acquiring Knowledge,
you are losing it »
Yuval Shahar
175
Web 1.0, …
176
Web 1.0, 2.0…
177
price
convert?
person
other sellers?
Web 1.0, 2.0, 3.0 …
The Web Conference 2018 Call For Contributions
The 2018 edition of The Web Conference (27th edition of the
former WWW conference) will offer many opportunities to present
and discuss latest advances in academia and industry.
•Research tracks
•Posters
•Tutorials
•Workshops
Other tracks (in alphabetical order):
•Challenges track
•Demos track
•Developers’ track
•Hackathon/Hackateen
•Hyperspot – Exhibition
•International project track
•Journal paper track
•Journalism, Misinformation
•and Fact Checking
•Minute of madness
•PHD symposium
•The BIG Web
•W3C track
•Web For All
•(W4A co-located conference)
•Web programming
and more CfP coming soon…
“bridging natural and artificial intelligence worldwide”
WIMMICS
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning & analyzing
epistemic communitieslinked data
usages and introspection
contributions and traces
180
Toward a Web of Programs
“We have the potential for every HTML document to be a
computer — and for it to be programmable. Because the thing
about a Turing complete computer is that … anything you can
imagine doing, you should be able to program.”
(Tim Berners-Lee, 2015)
181
one Web … a unique space in every meanings:
data
persons documents
programs
metadata
182
Toward a Web of Things
WIMMICSWeb-instrumented man-machine interactions, communities and semantics
   
Fabien Gandon - @fabien_gandon - http://fabien.info
he who controls metadata, controls the web
and through the world-wide web many things in our world.
Technical details: http://bit.ly/wimmics-papers

More Related Content

PDF
An introduction to Semantic Web and Linked Data
Fabien Gandon
 
PDF
Introduction to RDF
Dr Sukhpal Singh Gill
 
PDF
Introduction au web des données (Linked Data)
BorderCloud
 
PDF
Ontologies and semantic web
Stanley Wang
 
PPTX
Inference on the Semantic Web
Myungjin Lee
 
PPT
Introduction To RDF and RDFS
Nilesh Wagmare
 
PPTX
Data centric business and knowledge graph trends
Alan Morrison
 
PPTX
Semantic web
Pallavi Srivastava
 
An introduction to Semantic Web and Linked Data
Fabien Gandon
 
Introduction to RDF
Dr Sukhpal Singh Gill
 
Introduction au web des données (Linked Data)
BorderCloud
 
Ontologies and semantic web
Stanley Wang
 
Inference on the Semantic Web
Myungjin Lee
 
Introduction To RDF and RDFS
Nilesh Wagmare
 
Data centric business and knowledge graph trends
Alan Morrison
 
Semantic web
Pallavi Srivastava
 

What's hot (20)

PDF
Linked Data의 RDF 어휘 이해하고 체험하기 - FOAF, SIOC, SKOS를 중심으로 -
Dongbum Kim
 
PDF
RDF, SPARQL and Semantic Repositories
Marin Dimitrov
 
PPTX
[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...
DataScienceConferenc1
 
DOCX
NE7012- SOCIAL NETWORK ANALYSIS
rathnaarul
 
PDF
Big Data Visualization
Raffael Marty
 
PDF
CS6010 Social Network Analysis Unit II
pkaviya
 
PDF
Lecture: Ontologies and the Semantic Web
Marina Santini
 
PPSX
An Introduction to Semantic Web Technology
Ankur Biswas
 
PPTX
Web mining
TeklayBirhane
 
PPT
Understanding RDF: the Resource Description Framework in Context (1999)
Dan Brickley
 
DOCX
Sql vs NO-SQL database differences explained
Satya Pal
 
PPTX
Resource description framework
hozifa1010
 
PPTX
Big Data & Hadoop Tutorial
Edureka!
 
PPT
RDF and OWL
Rachel Lovinger
 
PPT
Introduction to RDF
Narni Rajesh
 
PPT
Web ontology language (owl)
Ameer Sameer
 
PDF
Introduction of Knowledge Graphs
Jeff Z. Pan
 
PPTX
RDF 개념 및 구문 소개
Dongbum Kim
 
PPTX
Data mesh
ManojKumarR41
 
PDF
CS6010 Social Network Analysis Unit III
pkaviya
 
Linked Data의 RDF 어휘 이해하고 체험하기 - FOAF, SIOC, SKOS를 중심으로 -
Dongbum Kim
 
RDF, SPARQL and Semantic Repositories
Marin Dimitrov
 
[DSC Europe 22] Lakehouse architecture with Delta Lake and Databricks - Draga...
DataScienceConferenc1
 
NE7012- SOCIAL NETWORK ANALYSIS
rathnaarul
 
Big Data Visualization
Raffael Marty
 
CS6010 Social Network Analysis Unit II
pkaviya
 
Lecture: Ontologies and the Semantic Web
Marina Santini
 
An Introduction to Semantic Web Technology
Ankur Biswas
 
Web mining
TeklayBirhane
 
Understanding RDF: the Resource Description Framework in Context (1999)
Dan Brickley
 
Sql vs NO-SQL database differences explained
Satya Pal
 
Resource description framework
hozifa1010
 
Big Data & Hadoop Tutorial
Edureka!
 
RDF and OWL
Rachel Lovinger
 
Introduction to RDF
Narni Rajesh
 
Web ontology language (owl)
Ameer Sameer
 
Introduction of Knowledge Graphs
Jeff Z. Pan
 
RDF 개념 및 구문 소개
Dongbum Kim
 
Data mesh
ManojKumarR41
 
CS6010 Social Network Analysis Unit III
pkaviya
 
Ad

Similar to Wimmics Research Team Overview 2017 (20)

PDF
One Web of pages, One Web of peoples, One Web of Services, One Web of Data, O...
Fabien Gandon
 
PDF
Overview of the Research in Wimmics 2018
Fabien Gandon
 
PDF
On the many graphs of the Web and the interest of adding their missing links.
Fabien Gandon
 
PPTX
Semantic Sensor Networks and Linked Stream Data
Oscar Corcho
 
PDF
Knowledge Graphs Synthesis Lectures On Data Semantics And Knowledge Aidan Hogan
sanoosrekop
 
PPTX
Web open standards for linked data and knowledge graphs as enablers of EU dig...
Fabien Gandon
 
PPT
Linked Data Workshop Stanford University
Talis Consulting
 
PDF
semantic and social (intra)webs
Fabien Gandon
 
PDF
Open Data - Principles and Techniques
Bernhard Haslhofer
 
PDF
EuropeanaTech 2018: A distributed network of digital heritage information
Enno Meijers
 
PPTX
Machines are people too
Paul Groth
 
PDF
Walking Our Way to the Web
Fabien Gandon
 
PDF
Humanities in the Digital World
David De Roure
 
PDF
A Decade in Hindsight: The Missing Bridge Between Multi-Agent Systems and the...
Andrei Ciortea
 
PPTX
Social Semantic (Sensor) Web
David Crowley
 
PDF
Introduction to Data Mining
AbcdDcba12
 
PDF
Wimmics Research Team 2015 Activity Report
Fabien Gandon
 
PPTX
鏈結資料在圖書館的應用20131107
皓仁 柯
 
PPTX
Computing for Human Experience [v3, Aug-Oct 2010]
Artificial Intelligence Institute at UofSC
 
PPTX
Web Information Systems Introduction and Origin of World Wide Web
Artificial Intelligence Institute at UofSC
 
One Web of pages, One Web of peoples, One Web of Services, One Web of Data, O...
Fabien Gandon
 
Overview of the Research in Wimmics 2018
Fabien Gandon
 
On the many graphs of the Web and the interest of adding their missing links.
Fabien Gandon
 
Semantic Sensor Networks and Linked Stream Data
Oscar Corcho
 
Knowledge Graphs Synthesis Lectures On Data Semantics And Knowledge Aidan Hogan
sanoosrekop
 
Web open standards for linked data and knowledge graphs as enablers of EU dig...
Fabien Gandon
 
Linked Data Workshop Stanford University
Talis Consulting
 
semantic and social (intra)webs
Fabien Gandon
 
Open Data - Principles and Techniques
Bernhard Haslhofer
 
EuropeanaTech 2018: A distributed network of digital heritage information
Enno Meijers
 
Machines are people too
Paul Groth
 
Walking Our Way to the Web
Fabien Gandon
 
Humanities in the Digital World
David De Roure
 
A Decade in Hindsight: The Missing Bridge Between Multi-Agent Systems and the...
Andrei Ciortea
 
Social Semantic (Sensor) Web
David Crowley
 
Introduction to Data Mining
AbcdDcba12
 
Wimmics Research Team 2015 Activity Report
Fabien Gandon
 
鏈結資料在圖書館的應用20131107
皓仁 柯
 
Computing for Human Experience [v3, Aug-Oct 2010]
Artificial Intelligence Institute at UofSC
 
Web Information Systems Introduction and Origin of World Wide Web
Artificial Intelligence Institute at UofSC
 
Ad

More from Fabien Gandon (20)

PDF
a shift in our research focus: from knowledge acquisition to knowledge augmen...
Fabien Gandon
 
PDF
Evaluation d’explications pour la prédiction de liens dans les graphes de con...
Fabien Gandon
 
PDF
A Never-Ending Project for Humanity Called “the Web”
Fabien Gandon
 
PDF
Wimmics Overview 2021
Fabien Gandon
 
PDF
CovidOnTheWeb : covid19 linked data published on the Web
Fabien Gandon
 
PDF
from linked data & knowledge graphs to linked intelligence & intelligence graphs
Fabien Gandon
 
PDF
The Web We Mix - benevolent AIs for a resilient web
Fabien Gandon
 
PDF
Web science AI and IA
Fabien Gandon
 
PDF
Normative Requirements as Linked Data
Fabien Gandon
 
PDF
How to supervise your supervisor?
Fabien Gandon
 
PDF
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
Fabien Gandon
 
PDF
Retours sur le MOOC "Web Sémantique et Web de données"
Fabien Gandon
 
PPTX
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
Fabien Gandon
 
PPTX
ESWC 2015 Closing and "General Chair's minute of Madness"
Fabien Gandon
 
PPTX
ESWC2015 opening ceremony
Fabien Gandon
 
PDF
Les (r)évolutions de la planète Web
Fabien Gandon
 
PDF
Données liées et Web sémantique : quand le lien fait sens.
Fabien Gandon
 
PDF
Data protection and security on the web, ESWC2014 Panel
Fabien Gandon
 
PDF
on the ontological necessity of the multidisciplinary development of the web
Fabien Gandon
 
PDF
quand le lien fait sens
Fabien Gandon
 
a shift in our research focus: from knowledge acquisition to knowledge augmen...
Fabien Gandon
 
Evaluation d’explications pour la prédiction de liens dans les graphes de con...
Fabien Gandon
 
A Never-Ending Project for Humanity Called “the Web”
Fabien Gandon
 
Wimmics Overview 2021
Fabien Gandon
 
CovidOnTheWeb : covid19 linked data published on the Web
Fabien Gandon
 
from linked data & knowledge graphs to linked intelligence & intelligence graphs
Fabien Gandon
 
The Web We Mix - benevolent AIs for a resilient web
Fabien Gandon
 
Web science AI and IA
Fabien Gandon
 
Normative Requirements as Linked Data
Fabien Gandon
 
How to supervise your supervisor?
Fabien Gandon
 
Dans l'esprit du Pagerank: regards croisés sur les algorithmes,
Fabien Gandon
 
Retours sur le MOOC "Web Sémantique et Web de données"
Fabien Gandon
 
Emotions in Argumentation: an Empirical Evaluation @ IJCAI 2015
Fabien Gandon
 
ESWC 2015 Closing and "General Chair's minute of Madness"
Fabien Gandon
 
ESWC2015 opening ceremony
Fabien Gandon
 
Les (r)évolutions de la planète Web
Fabien Gandon
 
Données liées et Web sémantique : quand le lien fait sens.
Fabien Gandon
 
Data protection and security on the web, ESWC2014 Panel
Fabien Gandon
 
on the ontological necessity of the multidisciplinary development of the web
Fabien Gandon
 
quand le lien fait sens
Fabien Gandon
 

Recently uploaded (20)

PPTX
Excretory System in insects ( PPT Presentation)
Dr Showkat Ahmad Wani
 
PDF
Paleoseismic activity in the moon’s Taurus-Littrowvalley inferred from boulde...
Sérgio Sacani
 
PDF
Multiwavelength Study of a Hyperluminous X-Ray Source near NGC6099: A Strong ...
Sérgio Sacani
 
PPT
Grade_9_Science_Atomic_S_t_r_u_cture.ppt
QuintReynoldDoble
 
PPT
1a. Basic Principles of Medical Microbiology Part 2 [Autosaved].ppt
separatedwalk
 
PDF
Vera C. Rubin Observatory of interstellar Comet 3I ATLAS - July 21, 2025.pdf
SOCIEDAD JULIO GARAVITO
 
PPTX
Seminar on ethics in biomedical research
poojabisht244
 
PPTX
fghvqwhfugqaifbiqufbiquvbfuqvfuqyvfqvfouiqvfq
PERMISONJERWIN
 
PPTX
Unit 4 - Astronomy and Astrophysics - Milky Way And External Galaxies
RDhivya6
 
PPTX
INTRO-TO-CRIM-THEORIES-OF-CRIME-2023 (1).pptx
ChrisFlickIII
 
PDF
Gamifying Agent-Based Models in Cormas: Towards the Playable Architecture for...
ESUG
 
PPTX
2019 Upper Respiratory Tract Infections.pptx
jackophyta10
 
PPTX
Introduction to biochemistry.ppt-pdf_shotrs!
Vishnukanchi darade
 
DOCX
Echoes_of_Andromeda_Partial (1).docx9989
yakshitkrishnia5a3
 
PPTX
The Toxic Effects of Aflatoxin B1 and Aflatoxin M1 on Kidney through Regulati...
OttokomaBonny
 
PDF
study of microbiologically influenced corrosion of 2205 duplex stainless stee...
ahmadfreak180
 
PPTX
General Characters and classification up to Order Level of Sub Class Pterygot...
Dr Showkat Ahmad Wani
 
PPTX
METABOLIC_SYNDROME Dr Shadab- kgmu lucknow pptx
ShadabAlam169087
 
PPTX
Hydrocarbons Pollution. OIL pollutionpptx
AkCreation33
 
PPTX
Modifications in RuBisCO system to enhance photosynthesis .pptx
raghumolbiotech
 
Excretory System in insects ( PPT Presentation)
Dr Showkat Ahmad Wani
 
Paleoseismic activity in the moon’s Taurus-Littrowvalley inferred from boulde...
Sérgio Sacani
 
Multiwavelength Study of a Hyperluminous X-Ray Source near NGC6099: A Strong ...
Sérgio Sacani
 
Grade_9_Science_Atomic_S_t_r_u_cture.ppt
QuintReynoldDoble
 
1a. Basic Principles of Medical Microbiology Part 2 [Autosaved].ppt
separatedwalk
 
Vera C. Rubin Observatory of interstellar Comet 3I ATLAS - July 21, 2025.pdf
SOCIEDAD JULIO GARAVITO
 
Seminar on ethics in biomedical research
poojabisht244
 
fghvqwhfugqaifbiqufbiquvbfuqvfuqyvfqvfouiqvfq
PERMISONJERWIN
 
Unit 4 - Astronomy and Astrophysics - Milky Way And External Galaxies
RDhivya6
 
INTRO-TO-CRIM-THEORIES-OF-CRIME-2023 (1).pptx
ChrisFlickIII
 
Gamifying Agent-Based Models in Cormas: Towards the Playable Architecture for...
ESUG
 
2019 Upper Respiratory Tract Infections.pptx
jackophyta10
 
Introduction to biochemistry.ppt-pdf_shotrs!
Vishnukanchi darade
 
Echoes_of_Andromeda_Partial (1).docx9989
yakshitkrishnia5a3
 
The Toxic Effects of Aflatoxin B1 and Aflatoxin M1 on Kidney through Regulati...
OttokomaBonny
 
study of microbiologically influenced corrosion of 2205 duplex stainless stee...
ahmadfreak180
 
General Characters and classification up to Order Level of Sub Class Pterygot...
Dr Showkat Ahmad Wani
 
METABOLIC_SYNDROME Dr Shadab- kgmu lucknow pptx
ShadabAlam169087
 
Hydrocarbons Pollution. OIL pollutionpptx
AkCreation33
 
Modifications in RuBisCO system to enhance photosynthesis .pptx
raghumolbiotech
 

Wimmics Research Team Overview 2017

  • 1. WEB OF DATA & SEMANTIC WEB LINKING DATA AND THEIR SCHEMAS AROUND THE WORLD. Fabien GANDON, @fabien_gandon http://fabien.info    
  • 2. WIMMICS TEAM  Inria  CNRS  University of Nice Inria Lille - Nord Europe (2008) Inria Saclay – Ile-de-France (2008) Inria Nancy – Grand Est (1986) Inria Grenoble – Rhône- Alpes (1992) Inria Sophia Antipolis Méditerranée (1983) Inria Bordeaux Sud-Ouest (2008) Inria Rennes Bretagne Atlantique (1980) Inria Paris-Rocquencourt (1967) Montpellier Lyon Nantes Strasbourg Center Branch Pau I3S Web-Instrumented Man-Machine Interactions, Communities and Semantics
  • 3. MULTI-DISCIPLINARY TEAM  41 members 2016, 50 in 2015  14 nationalities  1 DR, 3 Professors  3CR, 4 Assistant professors  1 SRP DR/Professors:  Fabien GANDON, Inria, AI, KR, Semantic Web, Social Web  Nhan LE THANH, UNS, Logics, KR, Emotions  Peter SANDER, UNS, Web, Emotions  Andrea TETTAMANZI, UNS, AI, Logics, Agents, CR/Assistant Professors:  Michel BUFFA, UNS, Web, Social Media  Elena CABRIO, UNS, NLP, KR, Linguistics  Olivier CORBY, Inria, KR, AI, Sem. Web, Programming, Graphs  Catherine FARON-ZUCKER, UNS, KR, AI, Semantic Web, Graphs  Alain GIBOIN, Inria, Interaction Design, KE, User & Task models  Isabelle MIRBEL, UNS, Requirements, Communities  Serena VILLATA, CNRS, AI, Argumentation, Licenses, Rights Inria Starting Position: Alexandre MONNIN, Philosophy, Web
  • 5. CHALLENGE to bridge social semantics and formal semantics on the Web
  • 6. WEB GRAPHS (meta)data of the relations and the resources of the web …sites …social …of data …of services + + + +… web… = + …semantics + + + +…= + typed graphs web (graphs) networks (graphs) linked data (graphs) workflows (graphs) schemas (graphs)
  • 7. CHALLENGES typed graphs to analyze, model, formalize and implement social semantic web applications for epistemic communities  multidisciplinary approach for analyzing and modeling the many aspects of intertwined information systems communities of users and their interactions  formalizing and reasoning on these models using typed graphs new analysis tools and indicators new functionalities and better management
  • 9. 9 extending human memory Vannevar Bush Memex, Life Magazine, 10/09/1945
  • 10. 10 hypermedia structure Vannevar Bush Memex, Life Magazine, 10/09/1945 Ted Nelson HyperText, ACM 1965
  • 11. 11 human-computer interaction Vannevar Bush Memex, Life Magazine, 10/09/1945 Douglas Engelbart Augment, Mouse, HCI, 1968 Ted Nelson HyperText, ACM 1965
  • 12. 12 inter-networking Vannevar Bush Memex, Life Magazine, 10/09/1945 Douglas Engelbart Augment, Mouse, HCI, 1968 Ted Nelson HyperText, ACM 1965 Vinton Cerf TCP/IP, Internet 1974
  • 13. 13 identify and link across networks Vannevar Bush Memex, Life Magazine, 10/09/1945 Information Management: A Proposal CERN, 1989 Tim Berners-LeeDouglas Engelbart Augment, Mouse, HCI, 1968 Ted Nelson HyperText, ACM 1965 Vinton Cerf TCP/IP, Internet 1974
  • 16. 23 three components of the Web architecture 1. identification (URI) & address (URL) ex. http://www.inria.fr URL
  • 17. 24 three components of the Web architecture 1. identification (URI) & address (URL) ex. http://www.inria.fr 2. communication / protocol (HTTP) GET /centre/sophia HTTP/1.1 Host: www.inria.fr HTTP URL address
  • 18. 25 three components of the Web architecture 1. identification (URI) & address (URL) ex. http://www.inria.fr 2. communication / protocol (HTTP) GET /centre/sophia HTTP/1.1 Host: www.inria.fr 3. representation language (HTML) Fabien works at <a href="http://inria.fr">Inria</a> HTTP URL HTML reference address communication WEB
  • 20. 27 multiplying references to the Web HTTP URL HTML reference address communication WEB
  • 21. identify what exists on the web http://my-site.fr identify, on the web, what exists http://animals.org/this-zebra
  • 23. Car configurations as linked data 1025 car configurations but only 1020 coherent (1/100 000) from [François-Paul Servant et al. ESWC 2012]
  • 25. every possible state on the Web
  • 26. publish data and computations CONSTRAINTS [Servant et al. 2012]
  • 29. 36 Beyond Documentary Representations HTTP URI reference address communication WEB HTTP URI HTML reference address communication WEB
  • 30. 37 pieces of a world-wide graph HTTP URI reference address communication WEB HTTP URI HTML reference address communication WEB RDF
  • 31. 38 a Web approach to data publication ???...« http://fr.dbpedia.org/resource/Paris »
  • 32. 39 a Web approach to data publication HTTP URI GET
  • 33. 40 a Web approach to data publication HTTP URI GET HTML, …
  • 34. 41 a Web approach to data publication HTTP URI GET HTML,RDF, XML,…
  • 36. a recipe to link data on the Web
  • 42. 49 linked open data(sets) cloud on the Web 0 200 400 600 800 1000 1200 1400 01/05/2007 08/10/2007 07/11/2007 10/11/2007 28/02/2008 31/03/2008 18/09/2008 05/03/2009 27/03/2009 14/07/2009 22/09/2010 19/09/2011 30/08/2014 26/01/2017 number of linked open datasets on the Web
  • 45. 52 a Web graph data model HTTP URI RDF reference address communication Web of data universal graph data model
  • 46. 53 "Music" RDFis a model for directed labeled multigraphs http://inria.fr/rr/doc.html http://ns.inria.fr/fabien.gandon#me http://inria.fr/schema#author http://inria.fr/schema#topic http://inria.fr/rr/doc.html http://inria.fr/schema#keyword
  • 47. GLOBAL GIANT GRAPH of linked (open) data on the Web
  • 48. RESEARCH QUESTIONS  Crawling, collecting, indexing  Scalability of storage, server, etc.  Modularization  Models and syntaxes (efficient, canonical, etc.)  Version management, long term preservation  Validation, transformation  Linking, named entity recognition,  Human-Data Interaction (visualize, browse, search, access, create, contribute, update, curate,)  Social, collective, collaborative interaction
  • 50. 57 query data sources on the Web URI reference address communication WEB RDFHTTP URI reference address communication WEB RDF
  • 51. 58 a Web graph access HTTP URI RDF reference address communication Web of data
  • 52. 59 Get Data, Not Documents ex. DBpedia
  • 53. RESEARCH QUESTIONS  Efficiency storage and querying  Efficient network access means: HTTP gets, Linked Data Fragments, Linked Data Platform (REST), SPARQL services, protocol and language  Distribution, federation and hybridization  Operations on flows  Dedicated graph operators (e.g. paths)  Reliable, persistent, trustworthy  Access control, (homomorphic) encryption, compression
  • 54. ADDING SEMANTICS WITH VOCABULARIES
  • 55. 62 infer, reason, with semantics URI reference address communication WEB RDF URI reference address communication WEB RDF RDFS OWL
  • 57. 64 RDFS to declare classes of resources, properties, and organize their hierarchy Document Report creator author Document Person
  • 58. 65 OWL in one… algebraic properties disjoint properties qualified cardinality 1..1 ! individual prop. neg chained prop.   enumeration intersection union complement  disjunction restriction! cardinality 1..1 equivalence [>18] disjoint union value restriction keys …
  • 61. RESEARCH QUESTIONS  Expressivity, complexity, decidability, completeness  Schemas validation, verification  Intelligent processing : classical, reasoning, deontic reasoning, induction, machine learning, data mining  Hybrid approaches (e.g. reasoning and ML)  Open world assumption (OWA)  Scaling, approximating and distributing reasoning  Heterogeneity  Alignment of resources and vocabularies  Uncertainty, data quality, data and processing traceability  Extraction, learning, mining, etc. of data and vocabularies
  • 63. 70 PROV-O: vocabulary for provenance and traceability describe entities and activities involved in providing a resource
  • 65. METHODS AND TOOLS 1. user & interaction design 
  • 66. METHODS AND TOOLS 1. user & interaction design 2. communities & social medias  
  • 67. METHODS AND TOOLS 1. user & interaction design 2. communities & social medias 3. linked data & semantic Web   
  • 68. METHODS AND TOOLS 1. user & interaction design 2. communities & social medias 3. linked data & semantic Web 4. reasoning & analyzing      G2 H2  G1 H1 < Gn Hn
  • 69. RESEARCH CHALLENGES 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing How do we improve our interactions with a semantic and social Web ? • capture and model the users' characteristics? • represent and reason with the users’ profiles? • adapt the system behaviors as a result? • design new interaction means? • evaluate the quality of the interaction designed? 
  • 70. RESEARCH CHALLENGES 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing How can we manage the collective activity on social media? • analyze the social interaction practices and the structures in which these practices take place? • capture the social interactions and structures? • formalize the models of these social constructs? • analyze & reason on these models of social activity? 
  • 71. RESEARCH CHALLENGES 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing What are the needed schemas and extensions of the semantic Web formalisms for our models? • formalisms best suited for the models of the challenges 1 & 2 ? • limitations and extensions of existing formalisms? • missing schemas, ontologies, vocabularies? • links and combinations of existing formalisms? 
  • 72. RESEARCH CHALLENGES 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing What are the algorithms required to analyze and reason on the heterogeneous graphs we obtained? • analyze graphs of different types and their interactions? • support different graph life-cycles, calculations and characteristics? • assist different tasks of our users? • design the Web architecture to deploy this? 
  • 73. METHODS AND TOOLS 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing      G2 H2  G1 H1 < Gn Hn
  • 74. METHODS AND TOOLS 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing  • KB interaction (context, Q&A, exploration, …) • user models, personas, emotion capture • mockups, evaluation campaigns     G2 H2  G1 H1 < Gn Hn
  • 75. METHODS AND TOOLS 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing   • KB interaction (context, Q&A, exploration, …) • user models, personas, emotion capture • mockups, evaluation campaigns • community detection, labelling • collective personas, coordinative artifacts • argumentation theory, sentiment analysis    G2 H2  G1 H1 < Gn Hn
  • 76. METHODS AND TOOLS 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing    • KB interaction (context, Q&A, exploration, …) • user models, personas, emotion capture • mockups, evaluation campaigns • community detection, labelling • collective personas, coordinative artifacts • argumentation theory, sentiment analysis • ontology-based knowledge representation • formalisms: typed graphs, uncertainty • knowledge extraction, data translation   G2 H2  G1 H1 < Gn Hn
  • 77. METHODS AND TOOLS 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing     • KB interaction (context, Q&A, exploration, …) • user models, personas, emotion capture • mockups, evaluation campaigns • community detection, labelling • collective personas, coordinative artifacts • argumentation theory, sentiment analysis • ontology-based knowledge representation • formalisms: typed graphs, uncertainty • knowledge extraction, data translation • graph querying, reasoning, transforming • induction, propagation, approximation • explanation, tracing, control, licensing, trust
  • 78. e.g. cultural data is a weapon of mass construction
  • 79. PUBLISHING  extract data (content, activity…)  provide them as linked data DBPEDIA.FR (extraction, end-point) 180 000 000 triples models Web architecture [Cojan, Boyer et al.]
  • 80. PUBLISHING DBpedia.fr usage number of queries per day 70 000 on average 2.5 millions max 185 377 686 RDF triples extracted and mapped public dumps, endpoints, interfaces, APIs…
  • 82. REUSE  build and help build applications DBPEDIA.FR (extraction, end-point) 180 000 000 triples Zone 47 BBC HdA Lab DiscoveryHub.co
  • 84. James Bridle’s twelve-volume encyclopedia of all changes to the Wikipedia article on the Iraq War booktwo.org
  • 86. EXTRACTED entire edition history as linked open data 1.9 billion triples describing the 107 million revisions since the first page was created <http://fr.wikipedia.org/wiki/Victor_Hugo> a prov:Revision ; dc:subject <http://fr.dbpedia.org/resource/Victor_Hugo> ; swp:isVersion "3496"^^xsd:integer ; dc:created "2002-06-06T08:48:32"^^xsd:dateTime ; dc:modified "2015-10-15T14:17:02"^^xsd:dateTime ; dbfr:uniqueContributorNb 1295 ; (...) dbfr:revPerYear [ dc:date "2015"^^xsd:gYear ; rdf:value "79"^^xsd:integer ] ; dbfr:revPerMonth [ dc:date "06/2002"^^xsd:gYearMonth ; rdf:value "3"^^xsd:integer ] ; (...) dbfr:averageSizePerYear [ dc:date "2015"^^xsd:gYear ; rdf:value "154110.18"^^xsd:float ] ; dbfr:averageSizePerMonth [ dc:date "06/2002"^^xsd:gYearMonth ; rdf:value "2610.66"^^xsd:float ] ; (...) dbfr:size "159049"^^xsd:integer ; dc:creator [ foaf:nick "Rinaldum" ] ; sioc:note "wikification"^^xsd:string ; prov:wasRevisionOf <http:// … 119074391> ; prov:wasAttributedTo [ foaf:name "Rémih" ; a prov:Person, foaf:Person ] . <http:// … 119074391> a prov:Revision ; dc:created "2015-09-29T19:35:34"^^xsd:dateTime ; dbfr:size "159034"^^xsd:integer ; dbfr:sizeNewDifference "-5"^^xsd:integer ; sioc:note "/*Années théâtre*/ neutralisation"^^xsd:string ; prov:wasAttributedTo [ foaf:name "Thouny" ; a prov:Person, foaf:Person ] ; prov:wasRevisionOf <http://... 118903583> . (...) <http:// … oldid=118201419> a prov:Revision ; prov:wasAttributedTo [ foaf:name "OrlodrimBot" ; a prov:SoftwareAgent ] ; (...) [Gandon, Boyer, Corby, Monnin 2016]
  • 89. DEMO Facetted history portals Elections in France Death of C. Lee Events in Ukraine
  • 90. DBPEDIA & STTL declarative transformation language from RDF to text formats (XML, JSON, HTML, Latex, natural language, GML, …) [Cojan, Corby, Faron-Zucker et al.]
  • 91. more data, more usages, more users
  • 92. ADAPTING TO USERS e.g. e-learning & serious games [Rodriguez-Rocha, Faron-Zucker et al.]
  • 93. LUDO: ontological modeling of serious games Learning Game KB Player’s profile & context Game design [Rodriguez-Rocha, Faron-Zucker et al.]
  • 94. DOCS & TOPICS link topics, questions, docs, [Dehors, Faron-Zucker et al.]
  • 95. MONITORING e.g. progress of learners [Dehors, Faron-Zucker et al.]
  • 96. EDUMICS  Ontology EduProgression: OWL modeling of scholar program  Ontology RefEduclever: new education referential for Educlever  Migration and persistence in graph databases  Reasoning, query, interactions, recommendation [Fokou, Faron et al. 2017]
  • 98. WASABI augmenting musical experience with the Web [Buffa, Jauva et al.] NLP & LOD & Lyrics
  • 99. ZOOMATHIA Cultural transmission of zoological knowledge from Antiquity to Middle Age [Faron Zucker, et al.]
  • 100. SCIENTIFIC HERITAGE  TAXREF Vocabulary  Data extraction and publication [Tounsi, Callou, Michel, Pajo, Faron Zucker et al.]
  • 101. “ Smarter Cities – IBM Dublin [Lécué, 2015]
  • 102. “searching” comes in many flavors
  • 103. SEARCHING  exploratory search  question-answering DBPEDIA.FR (extraction, end-point) 180 000 000 triples [Cojan, Boyer et al.]
  • 104. SEARCHING  exploratory search  question-answering DBPEDIA.FR (extraction, end-point) 180 000 000 triples DISCOVERYHUB.CO semantic spreading activation new evaluation protocol [Marie, Giboin, Palagi et al.] [Cojan, Boyer et al.]
  • 105. SEARCHING  exploratory search  question-answering DBPEDIA.FR (extraction, end-point) 180 000 000 triples DISCOVERYHUB.CO semantic spreading activation new evaluation protocol [D:Work], played by [R:Person] [D:Work] stars [R:Person] [D:Work] film stars [R:Person] starring(Work, Person) linguistic relational pattern extraction named entity recognition similarity based SPARQL generation select * where { dbpr:Batman_Begins dbp:starring ?v . OPTIONAL {?v rdfs:label ?l filter(lang(?l)="en")} } [Cabrio et al.] [Marie, Giboin, Palagi et al.] [Cojan, Boyer et al.] QAKiS.ORG
  • 111. QUESTION ROUTING  emails to the customer service (eg 350000/day “Crédit Mutuel”)  detect topics in order to “understand” a question  3 humans annotate 142 questions (Krippendorff’s Alpha 0,70)  NLP and semantic processing for features extraction  ML performance comparison for question classification Naive Bayes, Sequential Minimal Optimisation (SMO), Random Forest, RAndom k-labELsets (RAkEL) [Gazzotti, et al. 2017] NE recognition (L,T) Removing special characters Tokenization (L,T) Spell Checking (L,T) Lemmatization (L) Vector generation BOW/N-gram Replacement in documents Consider as feature Input Document ML workflow L: Language dependent - T: Text dependent Unbalanced Topics Metrics uni uni⨁bi uni+bi+tri uni⨁NE syn syn⨁hyper syn⨁NE Hamming Loss 0,0381 0,0370 0,0374 0,0373 0,0399 0,0412 0,0405
  • 118. INTERACTION design and evaluation Favoris Nouvelle recherche TEMPS Debut test Free Jazz 24s Free improvisation 33s (fiche) Avant-garde 47s John Coltrane (vidéo) 1min 28 Marc Ribot 2min11 (fiche) experimental music 2min18 2min23 Krautrock 2min31 (fiche) Progressive rock 2min37 2min39 Red (King Crimson album) 2m52 2min59 King Crimson 3min05 (fiche) Jazz fusion 3min18 (fiche) Free Jazz 3min32 3min54 Sun Ra 4min18 (fiche) Hard bop 4min41 4min47 Charles Mingus (vidéo) 5min29 (fiche) Third Stream (vidéo) 6min20 Bebop 7min19 Modal jazz 7min26 (fiche) Saxophone 7min51 7min55 Mel Collins 21st Century Schizoid Band Crimson Jazz Trio (fiche) King Crimson (fiche) Robert Fripp Miles Davis Thelonious Monk (fiche) Blue Note Record McCoy Tyner (fiche) Modal Jazz (fiche) Jazz Chick Corea (fiche) Jazz Fusion Return to Forever Mahavishnu Orchestra Shakti (band) U.Srinivas Bela Fleck Flecktones John McLaughlin (musician) Dixie Dregs FICHE Dixie Degs T Lavitz Jordan Rudess Behold… The Arctopus (fiche) Avant-garde metal Unexpected FICHE unexpected Dream Theater King Crimson (fiche) Jazz fusion King Crimson Tony Levin (fiche) Anderson Bruford Wakeman Howe (fiche) Rike Wakeman (vidéo) Fin test [Palagi, Marie, Giboin et al.]
  • 120. METHODS & CRITERIA  design and evaluation criteria  exploratory search process model [Palagi, Giboin et al. 2017] A. Define the search space B. Query (re)formulation C. Information gathering D. Put some information aside E. Pinpoint search F. Change of goal(s) G. Backward/forward steps H. Browsing results I. Results analysis J. Stop the search session Previous features Feature Next features NA A B ; J A ; F B G ; H ; I ; J D ; E ; I C D ; E ; F ; G ; H ; J E ; I D C ; F ; G ; J G ; H ; I E C ; D ; F ; G ; J C ; D ; E ; G ; H ; I F B ; H ; I ; J B ; D ; E ; H ; I G E ; F ; H ; I ; J B ; F ; G ; I H E ; F ; G ; ; I ; J B ; F ; G ; H I C ; D ; E ; F ; G ; H ; J all J NA
  • 121. MODELING USERS  individual context  social structures PRISSMA prissma:Context 0 48.86034 -2.337599 200 geo:lat geo:lon prissma:radius 1 :museumGeo prissma:Environment 2 { 3, 1, 2, { pr i ssma: poi } } { 4, 0, 3, { pr i ssma: envi r onment } } :atTheMuseum error tolerant graph edit distance context ontology [Costabello et al.]
  • 122. MODELING USERS  individual context  social structures PRISSMA prissma:Context 0 48.86034 -2.337599 200 geo:lat geo:lon prissma:radius 1 :museumGeo prissma:Environment 2 { 3, 1, 2, { pr i ssma: poi } } { 4, 0, 3, { pr i ssma: envi r onment } } :atTheMuseum error tolerant graph edit distance context ontology OCKTOPUS tag, topic, user distribution tag and folksonomy restructuring with prefix trees [Costabello et al.] [Meng et al.]
  • 123. MODELING USERS  individual context  social structures PRISSMA prissma:Context 0 48.86034 -2.337599 200 geo:lat geo:lon prissma:radius 1 :museumGeo prissma:Environment 2 { 3, 1, 2, { pr i ssma: poi } } { 4, 0, 3, { pr i ssma: envi r onment } } :atTheMuseum error tolerant graph edit distance context ontology OCKTOPUS tag, topic, user distribution tag and folksonomy restructuring with prefix trees EMOCA&SEEMPAD emotion detection & annotation [Villata, Cabrio et al.] [Costabello et al.] [Meng et al.]
  • 125. DEBATES & EMOTIONS #IRC argument rejection attacks-disgust
  • 126. OPINIONS NLP, ML and arguments [Villata, Cabrio, et al.]
  • 128. “ « a Web-Augmented Interaction (WAI) is a user’s interaction with a system that is improved by allowing the system to access Web resources » [Gandon, Giboin, WebSci17]
  • 129. ALOOF: Web and Perception [Cabrio, Basile et al.] Semantic Web-Mining and Deep Vision for Lifelong Object Discovery (ICRA 2017) Making Sense of Indoor Spaces using Semantic Web Mining and Situated Robot Perception (AnSWeR 2017)
  • 130. ALOOF: robots learning by reading on the Web Annie cuts the bread in the kitchen with her knife dbp:Knife aloof:Location dbp:Kitchen [Cabrio, Basile et al.]
  • 131. ALOOF: robots learning by reading on the Web  First Object Relation Knowledge Base: 46212 co-mentions, 49 tools, 14 rooms, 101 “possible location” relations, 696 tuples <entity, relation, frame>  Evaluation: 100 domestic implements, 20 rooms, 2000 crowdsourcing judgements  Object co-occurrence for coherence building Annie cuts the bread in the kitchen with her knife dbp:Knife aloof:Location dbp:Kitchen [Cabrio, Basile et al.]
  • 132. ALOOF: RDF dataset about objects [Cabrio, Basile et al.]  common sense knowledge about objects: classification, prototypical locations and actions  knowledge extracted from natural language parsing, crowdsourcing, distributional semantics, keyword linking, ...
  • 133. AZKAR remotely visit and interact with a museum through a robot and via the Web [Buffa et al.]
  • 135. QUERY & INFER  graph rules and queries  deontic reasoning  induction CORESE  & G2 H2  & G1 H1 < Gn Hn abstract graph machine STTL [Corby, Faron-Zucker et al.]
  • 136. QUERY & INFER  graph rules and queries  deontic reasoning  induction CORESE  & G2 H2  & G1 H1 < Gn Hn RATIO4TA predict & explain abstract graph machine STTL [Hasan et al.] [Corby, Faron-Zucker et al.]
  • 137. QUERY & INFER  graph rules and queries  deontic reasoning  induction CORESE INDUCTION  & G2 H2  & G1 H1 < Gn Hn RATIO4TA predict & explain find missing knowledge abstract graph machine STTL [Hasan et al.] [Tettamanzietal.] [Corby, Faron-Zucker et al.]
  • 138. QUERY & INFER  graph rules and queries  deontic reasoning  induction CORESE LICENTIA INDUCTION  & G2 H2  & G1 H1 < Gn Hn RATIO4TA predict & explain find missing knowledge deontic reasoning, license compatibility and composition abstract graph machine STTL [Hasan et al.] [Tettamanzietal.] [Villata et al.] [Corby, Faron-Zucker et al.]
  • 139. QUERY & INFER e.g. CORESE/KGRAM [Corby et al.]
  • 140. FO  R  GF  GR mapping modulo an ontology car vehicle car(x)vehicle(x) GF GR vehicle car O RIF-BLD SPARQL RIFSPARQL ?x ?x C C List(T1. . . Tn) (T1’. . . Tn’) OpenList(T1. . . Tn T) External(op((T1. . . Tn))) Filter(op’ (T1’. . . Tn’)) T1 = T2 Filter(T1’ =T2’) X # C X’ rdf:type C’ T1 ## T2 T1’ rdfs:subClassOf T2’ C(A1 ->V1 . . .An ->Vn) C(T1 . . . Tn) AND(A1. . . An) A1’. . . An’ Or(A1. . . An) {A1’} …UNION {An’} OPTIONAL{B} Exists ?x1 . . . ?xn (A) A’ Forall ?x1 . . . ?xn (H) Forall ?x1 . . . ?xn (H:- B) CONSTRUCT { H’} WHERE{ B’} restrictions equivalence no equivalence extensions
  • 141. FO  R  GF  GR mapping modulo an ontology car vehicle car(x)vehicle(x) GF GR vehicle car O truck car         121 ,, )(2121 2 21 2 1 ),(let;),( ttttt tdepthHc ttlttHtt c   ),(),(min),(let),( 21,21 2 21 21 ttlttlttdistHtt cc HHttttc   vehicle car O truck t1(x)t2(x)  d(t1,t2)< threshold
  • 142. LDSCRIPT a Linked Data Script Language FUNCTION us:status(?x) { IF (EXISTS { ?x ex:hasSpouse ?y }||EXISTS { ?y ex:hasSpouse ?x }, ex:Married, ex:Single) } [Corby, Faron Zucker, Gandon, ISWC 2017]
  • 143. DISTRIBUTED inductive index creation for a triple store [Basse, Gandon, Mirbel]
  • 144. DISTRIBUTED Querying heterogeneous and distributed data [Gaignard,Corby et al.]
  • 145. rr:objectMap 1 1 0-1 0-1 1 0-1 0-1 0-1 0-1 1 1 rr:GraphMaprr:graphMap 0-1 xrr:logicalSource xrr:LogicalSource xrr:query Query String rml:iterator Iteration pattern rr:IRI, rr:BlankNode, rr:Literal, xrr:RdfList, xrr:RdfBag, xrr:RdfSeq, xrr:RdfAlt reference expr. xrr:nestedTermMap xrr:NestedTermMap rr:inverseExrpression xrr:reference reference expr. reference expr. rr:ObjectMap HETEROGENEITY xR2RML mapping language and SPARQL query rewriting [Michel et al.] <AbstractQuery> ::= <AtomicQuery> | <Query> | <Query> FILTER <SPARQL filter> | <Query> LIMIT <integer> <Query> ::= <AbstractQuery> INNER JOIN <AbstractQuery> ON {v1, … vn} | <AtomicQuery> AS child INNER JOIN <AtomicQuery> AS parent ON child/<Ref> = parent/<Ref> | <AbstractQuery> LEFT OUTER JOIN <AbstractQuery> ON {v1, … vn} | <AbstractQuery> UNION <AbstractQuery> <AtomicQuery> ::= {From, Project, Where, Limit} <Ref> ::= a valid xR2RML data element reference
  • 146. QUERY & INFER e.g. Gephi+CORESE/KGRAM
  • 148. EXPLAIN  justify results  predict performances [Hasan et al.]
  • 149. EXPLAIN  justify results  predict performances [Hasan et al.]
  • 150. INDUCTION learning axioms from linked data on the Web [Tettamanzi et al.]
  • 151. DISCOVERING ASSOCIATION RULES [Tran, Tettamanzi, 2017] isParent(x, y) ⇐ isFather(x, y) isParent(x, y) ⇐ isMother(x, y) Rules induced by (Facts1 ∪ Facts2) isMother(Maria, Anna) isMother(Maria, Alli) isFather(Carlos, Anna) isFathe(Carlos, Alli) isParent(Maria, Anna) isParent(Maria, Alli) isParent(Carlos, Anna) isParent(Carlos, Alli)
  • 152. DISCOVERING ASSOCIATION RULES  Discovering Multi-Relational Association Rules in the Semantic Web  Inductive Logic Programming (ILP) = Logic Programming ∩ Machine Learning  Learning logic rules from examples and background knowledge  Evolutionary approach (genetic algo) [Tran, Tettamanzi, 2017] H1 ∧ ... ∧ Hm ⇐ B1 ∧ B2 ∧ ... Bn
  • 153. DISTRIBUTED AI  Agent-based Simulation for a Multi-context BDI Recommender  Solitary agents vs social agents: social agents have better performance than solitary ones  Trust/Distrust score to detect malicious agents  Possibility theory is an uncertainty theory dedicated to handle incomplete information [Ben Othmane, Tettamanzi, Serena Villata et al. 2017]
  • 154. QUERY & INFER e.g. Licencia [Villata et al.]
  • 155. DEONTICS Legal Rules on the Semantic Web OWL + Named Graphs + SPARQL Rules Named Graph (state of affair) Subject Predicate Object http://ns.inria.fr/nrv-inst#StateOfAffairs1 Tom http://ns.inria.fr/nrv-inst#activity driving at 100km/h http://ns.inria.fr/nrv-inst#StateOfAffairs1 Tom http://www.w3.org/2000/01/rdf-schema#label Tom http://ns.inria.fr/nrv-inst#StateOfAffairs1 can't drive over 90km http://www.w3.org/1999/02/22-rdf-syntax-ns#type violated requirement http://ns.inria.fr/nrv-inst#StateOfAffairs1 can't drive over 90km has for violation http://ns.inria.fr/nrv-inst#StateOfAffairs1 http://ns.inria.fr/nrv-inst#StateOfAffairs1 driving at 100km/h http://ns.inria.fr/nrv-inst#speed 100 http://ns.inria.fr/nrv-inst#StateOfAffairs1 driving at 100km/h http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://ns.inria.fr/nrv-inst#Driving http://ns.inria.fr/nrv-inst#StateOfAffairs1 driving at 100km/h http://www.w3.org/2000/01/rdf-schema#label "driving at 100km/h"@en Named Graph (state of affair) Subject Predicate Object http://ns.inria.fr/nrv-inst#StateOfAffairs2 Jim http://ns.inria.fr/nrv-inst#activity driving at 90km/h http://ns.inria.fr/nrv-inst#StateOfAffairs2 Jim http://www.w3.org/2000/01/rdf-schema#label Jim http://ns.inria.fr/nrv-inst#StateOfAffairs2 can't drive over 90km http://www.w3.org/1999/02/22-rdf-syntax-ns#type compliant requirement http://ns.inria.fr/nrv-inst#StateOfAffairs2 can't drive over 90km has for compliance http://ns.inria.fr/nrv-inst#StateOfAffairs2 http://ns.inria.fr/nrv-inst#StateOfAffairs2 driving at 90km/h http://ns.inria.fr/nrv-inst#speed 90 http://ns.inria.fr/nrv-inst#StateOfAffairs2 driving at 90km/h http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://ns.inria.fr/nrv-inst#Driving http://ns.inria.fr/nrv-inst#StateOfAffairs2 driving at 90km/h http://www.w3.org/2000/01/rdf-schema#label "driving at 90km/h"@en
  • 156. 171 cooperative company, spin-off wimmics Xxxx xxxx Xxxx xxxx x xxxx xxxx x xxxx Xxxx xx xxxx x Xxxxxx xxxxxx xxxxxxXxxxxx xxxxxx xxxxxx Xxxxxx xxxxxx xxxxxx contribute Xxxxxx xxxxxx xxxxxx contributes exhange Xxxxxx xxxxxx xxxxxx Xxxxxx xxxxxx xxxxxx link, enrich analyze, assist integrate to IS, intelligence, enterprise social medias
  • 158. “ «If you are not acquiring Knowledge, you are losing it » Yuval Shahar
  • 162. The Web Conference 2018 Call For Contributions The 2018 edition of The Web Conference (27th edition of the former WWW conference) will offer many opportunities to present and discuss latest advances in academia and industry. •Research tracks •Posters •Tutorials •Workshops Other tracks (in alphabetical order): •Challenges track •Demos track •Developers’ track •Hackathon/Hackateen •Hyperspot – Exhibition •International project track •Journal paper track •Journalism, Misinformation •and Fact Checking •Minute of madness •PHD symposium •The BIG Web •W3C track •Web For All •(W4A co-located conference) •Web programming and more CfP coming soon… “bridging natural and artificial intelligence worldwide”
  • 163. WIMMICS 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing epistemic communitieslinked data usages and introspection contributions and traces
  • 164. 180 Toward a Web of Programs “We have the potential for every HTML document to be a computer — and for it to be programmable. Because the thing about a Turing complete computer is that … anything you can imagine doing, you should be able to program.” (Tim Berners-Lee, 2015)
  • 165. 181 one Web … a unique space in every meanings: data persons documents programs metadata
  • 166. 182 Toward a Web of Things
  • 167. WIMMICSWeb-instrumented man-machine interactions, communities and semantics     Fabien Gandon - @fabien_gandon - http://fabien.info he who controls metadata, controls the web and through the world-wide web many things in our world. Technical details: http://bit.ly/wimmics-papers