SlideShare a Scribd company logo
Roadmap for
Enterprise Graph Strategy
Michael Moore, Ph.D.
Executive Director, Enterprise Knowledge Graphs + AI
EY Performance Improvement Advisory
michael.moore4@ey.com
July 18, 2019
The Database Landscape is Changing
SQL RDBMS
Column
Document Key Value
Graph
SearchServerlessStreams In-Memory
Traditional Databases
& Data Warehousing
NoSQL Databases
Data Services & Data Processing
Batch MR Blockchain
2
Scale Out  Scale Up
Continued increase in capacity and
dropping compute costs are challenging
scale-out commodity server assumptions,
particularly for database workloads
2018
3
Rankings Change in Popularity (db-engines.com)
*Proprietary method based on general interest, mentions, relevance in social networks, frequency of technical discussions etc.
Graph DBs
4
“We send email to people, so they will visit
our website and buy our product”
A Database specifically designed for creating, storing, and querying graphs
MATCH (e:Email)-[:SENT_TO]->
(p:Person {fullName: ’Steve Newman'})-[:VISITED]->
(w:Website)<-[:SOLD_ON]-(pr:Product)<-[:PURCHASED]-(p)
RETURN *
Semantic Representation
Graph Representation
Physical Representation
► Graphs have all possible logical relationships precomputed, much, much faster than SQL
► Graphs are fast and easy understand, develop and use
► Graphs integrate well with applications and data sources, great for real-time digital workloads
► Graphs surface, unify and mobilize data held in silos and data lakes
What is a Graph Database? 5
This is a Graph.
6
This is a Graph.7
This is a Graph.
8
Graph Use Cases
► Customer 360°
► Recommendation
Engines
► Marketing Attribution
► Enterprise Search
► Fraud Detection
► Master Data
Management
► Supply Chain
► Geolocation & Routing
► Access & Asset Control
► Social Networks
► IT & Network
Management
9
Real-Time, Evolving Graph View Across the Business
Data Ingestion, Cleansing, Reduction & Pipelining
Real-time BI & ScorecardsMobile & Web Applications Data Science
access control, metadata, recos, monitoring KPIs, targets, reporting, drill down/across attribution, similarity, fraud, pathing, cliques
Marketing ROI &
Digital Experience (CMO)
Data Governance &
Data Quality (CDO)
Operations & Risk
Management (CFO)
Account Coverage &
Customer LTV (CRO)
Product Marketing &
Recommendations (CPO)
UNSTRUCTURED LEGACY SNAPSHOTS
CONFORMED &
CURATED
STREAMS
Graphs Accelerate Enterprise Data Mobilization 10
11Roadmap for Enterprise Graph Strategy
Small Team:
• Graph Architect
• Data Engineer
• Full-stack Developer
• Data Scientist
• Report Developer
Problem / Scope
What will the graph
solve?
Production BuildCloud PilotLocalhost POCGraphy Problem
Business need, Data sources Data modeling, API, example queries Data snapshot, reference architecture, API suite Hardening, scheduled & stream ETL, Live UX
Stakeholder Input
Graph Design
Data Work
APIs / Data Services
Integration / Refinement
Scale / Harden / Run
Validate
What questions can now
be answered?
Connect
Does the data support the
graph model and
semantics?
Mobilize
What data does the new
experience need?
Use Cases
What is the feedback
from the business on how
well the graph solves the
use case?
Deploy
What monitoring, testing,
process needs to be put
in place to achieve a
robust SLA?
Key Conversations
Talk to the business, pick a graphy problem
What is a “Graphy” problem?
• Requires many entities (eg many SQL tables, 360° views)
• Involves recursion (eg. SQL self joins)
• Has complex, potentially colliding, hierarchies (eg SQL 1 to many, many-to-many)
• Based on informatics of the relationships themselves (eg collaborative filtering shared
relationship counts, shortest path segment summations for wayfinding, cost/time
minimization for supply chain, money flows for finance)
• Requires mapping, direct or indirect across data sources (eg data lake unification)
• Demands fast query results (eg digital applications, search)
• Most importantly, go talk to the business – what are the analytics you’d like to have or
customer experiences you’d like to light up – but can’t because of our current data
limitations?
• What’s the most critical data that you’d like to see connected?
• What would be an example demo that you’d find compelling (report/analysis/experience)
12
Production BuildCloud PilotLocalhost POCGraphy Problem
Get comfortable with Neo4j – don’t need to become an expert
• Get hands on – be fearless! Neo4j is the easiest graph database to
learn.
• Install Neo4j, Apoc procedures, set the following in Manage/Settings
#Apoc Plugin Configurations
apoc.import.file.enabled=true
apoc.export.file.enabled=true
dbms.security.procedures.unrestricted=*.*
• Go through the Cypher lessons, and learn basics graph modeling and to
load csv
LOAD CSV WITH HEADERS FROM "file:///movies.csv"
AS row
CALL apoc.load.csv(url,{}) YIELD map
• Any reasonably sized laptop should be able to handle a graph with
several million nodes and relationships You will quickly see some of the
significant benefits of connected data.
• For extra credit you can go onto github/neo4j-examples and download
starter applications for your favorite languages.
13
Production BuildCloud PilotLocalhost POCGraphy Problem
Design and build your POC Graph
• Start small and simple, limit yourself to 3-4 data sources, shallow extracts.
Snapshot SQL top queries for a pool of linked transactions
• Use common sense, business-friendly naming for your node labels and relationship
types. You’ll iterate this model using input from the business, and the model
should be clear and readable
• Don’t be afraid of recursion
(Employee)-[:REPORTS_TO]->(Employee) who is the boss?
• Don’t get too hung up on whether something should be a node label, property, or
relationship. Just keep in mind that node labels define set members, and that it’s
faster to search along relationships (traversal) than properties (full graph scan)
• You can use call db.schema() to see the graph schema, and we often use
http://apcjones.com/arrows/# to build illustrative schemas for conversations with
business stakeholders
• Test your graph design by writing some example queries, do this with your business
stakeholder
• Does this look right to you – is this how you would whiteboard this process? Am I
missing any key entities or relationships?
14
Production BuildCloud PilotLocalhost POCGraphy Problem
Example Knowledge Graph Schema
for Spend and Supply Chain Analytics
Supplier 360°
Spend Graph
• Accurately captures the
sourcing complexity of products
and services
• Enables more insightful indirect
spend analytics for products
and services
• Reconciles line-item detail to
top parent company, across
intermediate entities
• Extensible for audit, fraud
detection, tracking &
traceability
• Integrates with data lake,
reporting platforms and
transactional applications
Product Supply Chain Service Providers
Procurement
Top
Parent
Line
Item
Detail
Tracking and Traceability
Invoicing
Data fabric composed of nodes and relationships that
connect and mobilize data, using consistent semantics
15
1
Example Customer 360° Graph Schema
Account
Transactions
Segments
Product
Interactions
16
Customer 360°
Graph
• Accurately captures full range
of customer touchpoints across
enterprise surface area
• Enables more insightful indirect
spend analytics for products
and services
• Reconciles product usage,
marketing interactions and
digital identity
• Integrates with execution layer
for AI driven UX
Example B2B MDM Graph Schema
Product
Core Data Elements
Customer
& Contact
Orders
17
Master Data
Management
Graph Schema
• Accurately captures data
lineage for core identity
components
• Provides ”Golden Record” from
multi-source probabilistic
authority scores
• Relates contacts, customers,
orders and products without
loss of fidelity
• Enables detailed whitespace
analysis and next best sales
action
• Integrates with data lake and
CRM applications
Example Polyglot Discovery Graph Schema
Searchable Pointers to
Unstructured blobs
Text & Metrics from
Semi-Structured
data
Structured Data and Derived Entities
18
Data Discovery
Graph Schema
• Connects structured, semi-
structured and unstructured
data across polyglot storage
• Accurately handles complex
data and documents hierarchies
• Enables full text search in graph
or in document store, directly
and via NLP
• Provides source document
access through blob URLs
• Integrates with data lake,
reporting platforms and
transactional applications
Design and build your POC Graph 19
Production BuildCloud PilotLocalhost POCGraphy Problem
• Breakthrough queries
• Graph algorithms
• Data unification & mobilization
• Use-case specific (Customer 360, Supply Chain, Fraud, Reco)
• Make a localhost graph->app stack so you understand how
parameterized Cypher & Bolt drivers work
• Use any of the neo4j-examples to jumpstart
• If you don’t want to spend time creating a REST API, check out
GraphQL and the GRAND stack (https://github.com/grand-
stack/grand-stack-starter)
• Focus on the business value of the new graph enabled analytics –
We can now know this to make better decisions
We can now do this for our customers
20Neo4j - Power BI Integration with GraphQL
Graph Database
Neo4j GraphQL API
2
3
4
1. Client issues GraphQL query
2. GraphQL API sends Cypher query to Neo4j
3. Response data sent to Client
4. Data updated in PBI report
GraphQL schema, registered in Neo4j
m query cURL wrapper
PBI report
1
Neo4j – React Integration with GraphQL (GRAND Stack)
21
Pick and build your demo application for your snapshot graph 22
Production BuildCloud PilotLocalhost POCGraphy Problem
• Pick a cloud or on-prem
• Use Marketplace images if possible
• Start with a single instance VM for Neo4j, (~ RAM 50% of SQL size)
• Attach external drives so you can scale the server
• Determine your stack architecture
• Understand your data processing requirements
• Install Python – very good for performing batch operations, pip neo4j-driver
• Leverage Neo4j’s high speed loader
• Determine what cleansing needs to occur
• If you need help reach out to SI partner or Neo4j services
Pick and build your demo application for your snapshot graph 23
• MVP data domains
• Graph database, app-informed
• Simplest data service
• MVP app experience
• Add new experiences, same data
• Add new data domains
Nodejs, .Net, Python, React, Swift, Tableau, etc.
REST, Bolt
Production BuildCloud PilotLocalhost POCGraphy Problem
Michael’s I-Frame model For Graph ROI
 Accelerate Graph-driven User Experiences
CRM
Reporting
(Tableau, PBI)
Blobs FilesQueuesTables
Azure Cloud Storage
AI Sandbox
(Azure ML Studio)
Stream ETL
(Azure Event Hub)
Audience
Manager
Campaign
Target
Experience
Manager
Analytics
Marketo
Engage
Adobe Experience Cloud
Scheduled
ETL
Data
Reduction
(Azure Spark)
Cloud Data Lake
In-Memory
Document Store
Data Models
(Azure Analysis
Services)
Data Catalog
(Azure Data
Catalog)
ERP
AZURE VPC
In-Memory
Knowledge Graph
Data Services APIs
REST
Ingest Batch
StoreIngest Real-time
SearchConsolidate
Connect & Unify
Mobilize
Semantic
Layer
Analytics
Layer
Azure Data
Factory
Automated Reports
and Dashboards
Consistent Metrics
Data Discovery
Retention Models
Deep Learning
In-Memory
Sessionization
Data Aggregation
Syndicated
Data and Analytics
Knowledge Graph
Customer/Contact 360° View
Marketing Attribution
Recommendations
Real-time
Document Search
Elastic SQL Repository for
Curated & Conformed Data
Data Staging
Elastic Repository for
Raw and Unstructured Data
Real Time Updates
Customer Events
Automated Data Loading
Triggered Marketing
Consistent Experience
Example Graph Architecture Execution
Reporting
(Tableau,QuickSight)
S3 Blobs FilesQueuesEBS Tables
AWS Cloud Storage
Data
Discovery
(AWS Athena)
Stream ETL
(AWS Kinesis)
Audience
Manager
Campaign
Target
Experience
Manager
Analytics
Marketo
Engage
Adobe Experience Cloud (Azure)
Scheduled ETL
(AWS Data Pipeline,
PDI Kettle)
Data
Reduction
(AWS EMR)
Cloud Data Lake
In-Memory
Document Store
Machine
Learning
(AWS SageMaker)
Data Catalog
(AWS Glue)
ERP
AWS VPC
In-Memory
Knowledge Graph
Data Services APIs
REST
Ingest Batch
StoreIngest Real-time
SearchConsolidate
Connect & Unify
Mobilize
Execution
Semantic
Layer
Analytics
Layer
Example Graph Architecture
Automated Reports
and Dashboards
Retention Models
Deep Learning
Data Discovery
Consistent
Data Models
Sessionization
Data Aggregation
Knowledge Graph
Customer/Contact 360° View
Marketing Attribution
Recommendations
Real-time
Document Search
Elastic SQL Repository for
Curated & Conformed Data
Data Staging
Elastic Repository for
Raw and Unstructured Data
CRM
Real Time Updates
Customer Events
Automated Data Loading
Triggered Marketing
Consistent Experience
Syndicated
Data and Analytics
Enterprise Knowledge Graph Development with Neo4j
• Locate and validate data lake tables
• Design test graph schema
• Estimate graph size from nodes, relationships and properties
• Configure Neo4j server to minimize SSD disk contention
• Prepare Hive queries to generate graph-form tables (nodes, relationships)
• Validate key uniqueness, string handling, character types, relationship mappings
• Export graph form tables to gzip csv files
• Iteratively test data loader scripts, file by file
• On successful completion of hydration, apply constraints and indexes, refactor as needed
Graph-form TablesData Lake Tables CSV.gz Files Load Script Data Store
EXTRACT EXTRACT HIGH SPEED LOADER
IMPORT DONE in 1h 29m 16s 530ms.
Imported:
458356377 nodes
2176603843 relationships
9064981812 properties
Peak memory usage: 9.46 GB
26
Polyglot Graph Data Processing
Extract XML,
Convert to JSON,
Load JSON with
Azure Blob URI
Extract and Load
Azure Blob URIs
Extract and Load
• Document Metadata
• Named Entities
• Map Relationships
• Text Summaries
Graph Analytics & Queries
Couchbase Full Text Search
Pointers to Azure Blob URIs
Leveraging fit-for-purpose storage:
Graph storage for unified many-to-many access to cross-domain data
Document storage for searchable access to semi-structured data
Blob storage repository for large, raw and unstructured data
37,157 blobs
5.5 TB
Unstructured:
Semi-Structured:
Load CSV to Graph
Structured:
20,573 JSONs
5 GB
Reports/Applications
Data Mobilization and Graph Unification – Full Lineage and Auditability
215K nodes & relationships
1.5 GB
27
Production BuildCloud PilotLocalhost POCGraphy Problem
Go to Production 28
• Follow your IT best practices
• Security, assume you’ll be breached
• Deploy full environment set – Prod cluster, Stg cluster,
Test, Dev
• DevOps - leverage Jenkins, Ansible
• Wrap your solution in test automation
• Do load testing against your APIs to look for additional
optimization opportunities (Gatling)
• Monitor your logs (Splunk, Dynatrace)
• Monitor your common queries, refactor or reindex as
needed, optimize for speed
• Leverage the I-Frame Model to provide more value
29Roadmap for Enterprise Graph Strategy
Small Team:
• Graph Architect
• Data Engineer
• Full-stack Developer
• Data Scientist
• Report Developer
Problem / Scope
What will the graph
solve?
Production BuildCloud PilotLocalhost POCGraphy Problem
Business need, Data sources Data modeling, API, example queries Data snapshot, reference architecture, API suite Hardening, scheduled & stream ETL, Live UX
Stakeholder Input
Graph Design
Data Work
APIs / Data Services
Integration / Refinement
Scale / Harden / Run
Validate
What questions can now
be answered?
Connect
Does the data support the
graph model and
semantics?
Mobilize
What data does the new
experience need?
Use Cases
What is the feedback
from the business on how
well the graph solves the
use case?
Deploy
What monitoring, testing,
process needs to be put
in place to achieve a
robust SLA?
Key Conversations
EY Cross-Sector Graph Experience: MDM, 360°, AML/Fraud, Recommenders 30
Fortune 100 Tech Company
Use Case:
Global B2B Account 360° view and
marketing attribution
Approach:
Neo4j graph with 500M nodes
and 2.2B relationships,
representing all known business
accounts, contacts and marketing
touches. Mastered data from
17disparate transactional sources
in Azure Data Lake. Supported in-
graph analytics for marketing
attribution and next best action
recommendations across global
geographies
Duration:
16 weeks to working graph
Fortune 100 Footwear Company
Use Case:
Converged Brick & Mortar +
Online Shopper 360° View
Approach:
Neo4j graph with 2B nodes and
relationships, representing sales
transactions for 40M shoppers
across 275 physical stores and the
ecommerce platform. Algorithmic
extraction and profiling from raw
XML records in AWS Hadoop,
MDM record concordance and in-
graph analytics for product
associations, store analytics and
recommendation services.
Duration:
12 weeks to working graph,
ongoing project through 2018
Fortune 500 Cruise Line Company
Use Case:
Shipboard and Shoreside
Recommendation Engine
Approach:
Neo4j graph deployable to
shipboard VM Ware data centers,
with streaming updates from
large shoreside Neo4j graph
integrating data from Azure
Cerebro, Adobe Experience
Manager and legacy transactional
systems. In-graph
analytics,services API,
recommendation engine for next
best activity for passengers
surfaced via mobile app
Duration:
12 weeks to working graph,
ongoing project through 2018
Fortune 100 Investment Firm
Use Case:
Enhanced Anti-Money Laundering
and Fraud Detection using
Graph+AI
Approach:
Neo4j graph of account 360° view
representing activity of 2M
accounts over 4 years. MDM and
entity extraction for account and
party identity elements from
enterprise Oracle system.
Network clustering, feature
engineering and graph embedding
in TensorFlow deep learning
classifier for suspicious activity
patterns across accounts and
between parties.
Duration:
16 weeks to working graph
Fortune 100 Tech Company
Use Case:
B2B Local Marketing Events
Recommendation Engine
Approach:
Neo4j graph and personalized
next best event recommendation
engine for B2B field marketers.
Reconciles physical and digital
event attendees with corporate
account structures for 10K
accounts and 5M contacts
Entities mastered from
transactional data in SQLServer
and Azure Data Lake.
Microservices APIs support data
syndication to martech
applications and PowerBI
reporting.
Duration:
10 weeks to working graph
Better Questions
How can I get more business value and deeper
insights from the data I already have?
How can I get a better understanding of my customers to
create more relevant experiences?
How can I more effectively mobilize and
syndicate the data I’m ingesting?
What is the next best action I can take?
Thank
You!
31
Michael Moore, Ph.D.
Executive Director
► Michael Moore is an Executive Director and Practice Lead for Graph + AI
in EY’s Tech Consulting Emerging Technology (ET) Group
► Joined EY in 2017, based in the Seattle, WA office
► Ph.D. University of California, Berkeley
► B.S. & B.A. University of California, Santa Cruz
► Society Consulting – Graph Architect
Schema, ETL & systems design for a high-performance Neo4j graph database encompassing the totality
of Microsoft’s B2B data on Azure VM. Graph database supports multi-touch marketing attribution
analytics and multi-dimensional event-based audience segmentation & recommendations for direct
marketing. Provided POC graph reporting and visualization interfaces. Neo4j Enterprise edition, Python,
Node.js, nGraph, Javascript.
► Microsoft Corporation – General Manager
Management of core BI infrastructure and measurement capabilities supporting Microsoft's global
marketing budget cascade, campaign reporting, pipeline reporting, incentive reporting, ROMI reporting,
social and web analytics on Microsoft.com for the Global Marketing Operations team. Management of
complex projects across multiple subsidiaries, agencies and vendors. Strategic focus on foundational
database, digital and social marketing capabilities including: marketing ROI, customer & channel partner
engagement, marketing conversion, sales pipeline, dynamic personalization, data mining, predictive
modeling, behavioral segmentation, privacy governance, web enablement, tracking & measurement,
and internal & external data quality, and instrumentation process control.
► Grey San Francisco – VP Analytics
Responsible for ongoing campaign reporting, ROI analysis, creative and placement optimizations for
agency clients. Architected and deployed an enterprise OLAP reporting solution on Oracle RAC /
Microstrategy to improve quality and efficiency of analytics operations. Provided advanced analytical
services to clients in retail, tech, banking and automotive, including consulting, regression modeling and
data mining.
Profile Select professional experience
Skills and tool knowledge
► Michael Moore, Ph.D. is an Executive Director in the Advisory Services
practice of Ernst & Young LLP. He is the National practice lead for
Enterprise Knowledge Graphs + AI in EY’s Data and Analytics (DnA) Group.
► Michael has industry and solution in customer experience, customer
service, e-commerce, ad-serving, web and media analytics, consumer
loyalty and churn, marketing optimization, enterprise and partner pipeline,
and social media
► He specializes in graph database architecture, graph-based advanced
analytics, machine learning and recommender systems. Michael is certified
Neo4j Professional, and has active enterprise graph engagements in
financial services, tech, oil & gas, retail and hospitality sectors.
32
Ad

More Related Content

What's hot (20)

ESWC 2017 Tutorial Knowledge Graphs
ESWC 2017 Tutorial Knowledge GraphsESWC 2017 Tutorial Knowledge Graphs
ESWC 2017 Tutorial Knowledge Graphs
Peter Haase
 
Data Engineering Basics
Data Engineering BasicsData Engineering Basics
Data Engineering Basics
Catherine Kimani
 
Data Modeling with Neo4j
Data Modeling with Neo4jData Modeling with Neo4j
Data Modeling with Neo4j
Neo4j
 
Power BI Full Course | Power BI Tutorial for Beginners | Edureka
Power BI Full Course | Power BI Tutorial for Beginners | EdurekaPower BI Full Course | Power BI Tutorial for Beginners | Edureka
Power BI Full Course | Power BI Tutorial for Beginners | Edureka
Edureka!
 
Moving to Databricks & Delta
Moving to Databricks & DeltaMoving to Databricks & Delta
Moving to Databricks & Delta
Databricks
 
ETL in the Cloud With Microsoft Azure
ETL in the Cloud With Microsoft AzureETL in the Cloud With Microsoft Azure
ETL in the Cloud With Microsoft Azure
Mark Kromer
 
Building Robust ETL Pipelines with Apache Spark
Building Robust ETL Pipelines with Apache SparkBuilding Robust ETL Pipelines with Apache Spark
Building Robust ETL Pipelines with Apache Spark
Databricks
 
Triplestore and SPARQL
Triplestore and SPARQLTriplestore and SPARQL
Triplestore and SPARQL
Lino Valdivia
 
Building Modern Data Platform with Microsoft Azure
Building Modern Data Platform with Microsoft AzureBuilding Modern Data Platform with Microsoft Azure
Building Modern Data Platform with Microsoft Azure
Dmitry Anoshin
 
Using Databricks as an Analysis Platform
Using Databricks as an Analysis PlatformUsing Databricks as an Analysis Platform
Using Databricks as an Analysis Platform
Databricks
 
Data modelling 101
Data modelling 101Data modelling 101
Data modelling 101
Christopher Bradley
 
Introduction to Solr
Introduction to SolrIntroduction to Solr
Introduction to Solr
Erik Hatcher
 
An Introduction to NOSQL, Graph Databases and Neo4j
An Introduction to NOSQL, Graph Databases and Neo4jAn Introduction to NOSQL, Graph Databases and Neo4j
An Introduction to NOSQL, Graph Databases and Neo4j
Debanjan Mahata
 
Graph Structure in the Web - Revisited. WWW2014 Web Science Track
Graph Structure in the Web - Revisited. WWW2014 Web Science TrackGraph Structure in the Web - Revisited. WWW2014 Web Science Track
Graph Structure in the Web - Revisited. WWW2014 Web Science Track
Chris Bizer
 
Webinar future dataintegration-datamesh-and-goldengatekafka
Webinar future dataintegration-datamesh-and-goldengatekafkaWebinar future dataintegration-datamesh-and-goldengatekafka
Webinar future dataintegration-datamesh-and-goldengatekafka
Jeffrey T. Pollock
 
Power BI for Big Data and the New Look of Big Data Solutions
Power BI for Big Data and the New Look of Big Data SolutionsPower BI for Big Data and the New Look of Big Data Solutions
Power BI for Big Data and the New Look of Big Data Solutions
James Serra
 
Introduction to Graph Databases
Introduction to Graph DatabasesIntroduction to Graph Databases
Introduction to Graph Databases
Max De Marzi
 
Introduction to Graph Databases
Introduction to Graph DatabasesIntroduction to Graph Databases
Introduction to Graph Databases
DataStax
 
Mongodb vs mysql
Mongodb vs mysqlMongodb vs mysql
Mongodb vs mysql
hemal sharma
 
Modern data warehouse presentation
Modern data warehouse presentationModern data warehouse presentation
Modern data warehouse presentation
David Rice
 
ESWC 2017 Tutorial Knowledge Graphs
ESWC 2017 Tutorial Knowledge GraphsESWC 2017 Tutorial Knowledge Graphs
ESWC 2017 Tutorial Knowledge Graphs
Peter Haase
 
Data Modeling with Neo4j
Data Modeling with Neo4jData Modeling with Neo4j
Data Modeling with Neo4j
Neo4j
 
Power BI Full Course | Power BI Tutorial for Beginners | Edureka
Power BI Full Course | Power BI Tutorial for Beginners | EdurekaPower BI Full Course | Power BI Tutorial for Beginners | Edureka
Power BI Full Course | Power BI Tutorial for Beginners | Edureka
Edureka!
 
Moving to Databricks & Delta
Moving to Databricks & DeltaMoving to Databricks & Delta
Moving to Databricks & Delta
Databricks
 
ETL in the Cloud With Microsoft Azure
ETL in the Cloud With Microsoft AzureETL in the Cloud With Microsoft Azure
ETL in the Cloud With Microsoft Azure
Mark Kromer
 
Building Robust ETL Pipelines with Apache Spark
Building Robust ETL Pipelines with Apache SparkBuilding Robust ETL Pipelines with Apache Spark
Building Robust ETL Pipelines with Apache Spark
Databricks
 
Triplestore and SPARQL
Triplestore and SPARQLTriplestore and SPARQL
Triplestore and SPARQL
Lino Valdivia
 
Building Modern Data Platform with Microsoft Azure
Building Modern Data Platform with Microsoft AzureBuilding Modern Data Platform with Microsoft Azure
Building Modern Data Platform with Microsoft Azure
Dmitry Anoshin
 
Using Databricks as an Analysis Platform
Using Databricks as an Analysis PlatformUsing Databricks as an Analysis Platform
Using Databricks as an Analysis Platform
Databricks
 
Introduction to Solr
Introduction to SolrIntroduction to Solr
Introduction to Solr
Erik Hatcher
 
An Introduction to NOSQL, Graph Databases and Neo4j
An Introduction to NOSQL, Graph Databases and Neo4jAn Introduction to NOSQL, Graph Databases and Neo4j
An Introduction to NOSQL, Graph Databases and Neo4j
Debanjan Mahata
 
Graph Structure in the Web - Revisited. WWW2014 Web Science Track
Graph Structure in the Web - Revisited. WWW2014 Web Science TrackGraph Structure in the Web - Revisited. WWW2014 Web Science Track
Graph Structure in the Web - Revisited. WWW2014 Web Science Track
Chris Bizer
 
Webinar future dataintegration-datamesh-and-goldengatekafka
Webinar future dataintegration-datamesh-and-goldengatekafkaWebinar future dataintegration-datamesh-and-goldengatekafka
Webinar future dataintegration-datamesh-and-goldengatekafka
Jeffrey T. Pollock
 
Power BI for Big Data and the New Look of Big Data Solutions
Power BI for Big Data and the New Look of Big Data SolutionsPower BI for Big Data and the New Look of Big Data Solutions
Power BI for Big Data and the New Look of Big Data Solutions
James Serra
 
Introduction to Graph Databases
Introduction to Graph DatabasesIntroduction to Graph Databases
Introduction to Graph Databases
Max De Marzi
 
Introduction to Graph Databases
Introduction to Graph DatabasesIntroduction to Graph Databases
Introduction to Graph Databases
DataStax
 
Modern data warehouse presentation
Modern data warehouse presentationModern data warehouse presentation
Modern data warehouse presentation
David Rice
 

Similar to Your Roadmap for An Enterprise Graph Strategy (20)

Your Roadmap for An Enterprise Graph Strategy
Your Roadmap for An Enterprise Graph StrategyYour Roadmap for An Enterprise Graph Strategy
Your Roadmap for An Enterprise Graph Strategy
Neo4j
 
Your Roadmap for An Enterprise Graph Strategy
Your Roadmap for An Enterprise Graph StrategyYour Roadmap for An Enterprise Graph Strategy
Your Roadmap for An Enterprise Graph Strategy
Neo4j
 
Your Roadmap for An Enterprise Graph Strategy
Your Roadmap for An Enterprise Graph StrategyYour Roadmap for An Enterprise Graph Strategy
Your Roadmap for An Enterprise Graph Strategy
Neo4j
 
Neo4j GraphTour New York_EY Presentation_Michael Moore
Neo4j GraphTour New York_EY Presentation_Michael MooreNeo4j GraphTour New York_EY Presentation_Michael Moore
Neo4j GraphTour New York_EY Presentation_Michael Moore
Neo4j
 
Roadmap for Enterprise Graph Strategy
Roadmap for Enterprise Graph StrategyRoadmap for Enterprise Graph Strategy
Roadmap for Enterprise Graph Strategy
Neo4j
 
SAP Business Data Cloud: Was die neue SAP-Lösung für Unternehmen und ihre Dat...
SAP Business Data Cloud: Was die neue SAP-Lösung für Unternehmen und ihre Dat...SAP Business Data Cloud: Was die neue SAP-Lösung für Unternehmen und ihre Dat...
SAP Business Data Cloud: Was die neue SAP-Lösung für Unternehmen und ihre Dat...
IBsolution GmbH
 
Data Architecture, Solution Architecture, Platform Architecture — What’s the ...
Data Architecture, Solution Architecture, Platform Architecture — What’s the ...Data Architecture, Solution Architecture, Platform Architecture — What’s the ...
Data Architecture, Solution Architecture, Platform Architecture — What’s the ...
DATAVERSITY
 
Using ML and Azure to improve Customer Lifetime Value
Using ML and Azure to improve Customer Lifetime ValueUsing ML and Azure to improve Customer Lifetime Value
Using ML and Azure to improve Customer Lifetime Value
Navin Albert
 
SPS Vancouver 2018 - What is CDM and CDS
SPS Vancouver 2018 - What is CDM and CDSSPS Vancouver 2018 - What is CDM and CDS
SPS Vancouver 2018 - What is CDM and CDS
Nicolas Georgeault
 
Big Data Analytics in the Cloud with Microsoft Azure
Big Data Analytics in the Cloud with Microsoft AzureBig Data Analytics in the Cloud with Microsoft Azure
Big Data Analytics in the Cloud with Microsoft Azure
Mark Kromer
 
Produktdatenmanagement mit Neo4j
Produktdatenmanagement mit Neo4jProduktdatenmanagement mit Neo4j
Produktdatenmanagement mit Neo4j
Neo4j
 
MuleSoft Meetup June London 2023.pptx.pdf
MuleSoft Meetup June London 2023.pptx.pdfMuleSoft Meetup June London 2023.pptx.pdf
MuleSoft Meetup June London 2023.pptx.pdf
AnoopVB2
 
How Celtra Optimizes its Advertising Platform with Databricks
How Celtra Optimizes its Advertising Platformwith DatabricksHow Celtra Optimizes its Advertising Platformwith Databricks
How Celtra Optimizes its Advertising Platform with Databricks
Grega Kespret
 
DataLive conference in Geneva 2018 - Bringing AI to the Data
DataLive conference in Geneva 2018 - Bringing AI to the DataDataLive conference in Geneva 2018 - Bringing AI to the Data
DataLive conference in Geneva 2018 - Bringing AI to the Data
Sasha Lazarevic
 
Integrating Advanced Analytics with Autodesk Solutions
Integrating Advanced Analytics with Autodesk SolutionsIntegrating Advanced Analytics with Autodesk Solutions
Integrating Advanced Analytics with Autodesk Solutions
Rich Hanapole
 
Democratizing AI/ML with GCP - Abishay Rao (Google) at GoDataFest 2019
Democratizing AI/ML with GCP - Abishay Rao (Google) at GoDataFest 2019Democratizing AI/ML with GCP - Abishay Rao (Google) at GoDataFest 2019
Democratizing AI/ML with GCP - Abishay Rao (Google) at GoDataFest 2019
GoDataDriven
 
Digital Reinvention by NRB
Digital Reinvention by NRBDigital Reinvention by NRB
Digital Reinvention by NRB
William Poos
 
Mark Simpson - UKOUG23 - Refactoring Monolithic Oracle Database Applications ...
Mark Simpson - UKOUG23 - Refactoring Monolithic Oracle Database Applications ...Mark Simpson - UKOUG23 - Refactoring Monolithic Oracle Database Applications ...
Mark Simpson - UKOUG23 - Refactoring Monolithic Oracle Database Applications ...
marksimpsongw
 
3 Steps to Accelerate to Cloud
3 Steps to Accelerate to Cloud3 Steps to Accelerate to Cloud
3 Steps to Accelerate to Cloud
RightScale
 
Data Discovery and BI - Is there Really a Difference?
Data Discovery and BI - Is there Really a Difference?Data Discovery and BI - Is there Really a Difference?
Data Discovery and BI - Is there Really a Difference?
Inside Analysis
 
Your Roadmap for An Enterprise Graph Strategy
Your Roadmap for An Enterprise Graph StrategyYour Roadmap for An Enterprise Graph Strategy
Your Roadmap for An Enterprise Graph Strategy
Neo4j
 
Your Roadmap for An Enterprise Graph Strategy
Your Roadmap for An Enterprise Graph StrategyYour Roadmap for An Enterprise Graph Strategy
Your Roadmap for An Enterprise Graph Strategy
Neo4j
 
Your Roadmap for An Enterprise Graph Strategy
Your Roadmap for An Enterprise Graph StrategyYour Roadmap for An Enterprise Graph Strategy
Your Roadmap for An Enterprise Graph Strategy
Neo4j
 
Neo4j GraphTour New York_EY Presentation_Michael Moore
Neo4j GraphTour New York_EY Presentation_Michael MooreNeo4j GraphTour New York_EY Presentation_Michael Moore
Neo4j GraphTour New York_EY Presentation_Michael Moore
Neo4j
 
Roadmap for Enterprise Graph Strategy
Roadmap for Enterprise Graph StrategyRoadmap for Enterprise Graph Strategy
Roadmap for Enterprise Graph Strategy
Neo4j
 
SAP Business Data Cloud: Was die neue SAP-Lösung für Unternehmen und ihre Dat...
SAP Business Data Cloud: Was die neue SAP-Lösung für Unternehmen und ihre Dat...SAP Business Data Cloud: Was die neue SAP-Lösung für Unternehmen und ihre Dat...
SAP Business Data Cloud: Was die neue SAP-Lösung für Unternehmen und ihre Dat...
IBsolution GmbH
 
Data Architecture, Solution Architecture, Platform Architecture — What’s the ...
Data Architecture, Solution Architecture, Platform Architecture — What’s the ...Data Architecture, Solution Architecture, Platform Architecture — What’s the ...
Data Architecture, Solution Architecture, Platform Architecture — What’s the ...
DATAVERSITY
 
Using ML and Azure to improve Customer Lifetime Value
Using ML and Azure to improve Customer Lifetime ValueUsing ML and Azure to improve Customer Lifetime Value
Using ML and Azure to improve Customer Lifetime Value
Navin Albert
 
SPS Vancouver 2018 - What is CDM and CDS
SPS Vancouver 2018 - What is CDM and CDSSPS Vancouver 2018 - What is CDM and CDS
SPS Vancouver 2018 - What is CDM and CDS
Nicolas Georgeault
 
Big Data Analytics in the Cloud with Microsoft Azure
Big Data Analytics in the Cloud with Microsoft AzureBig Data Analytics in the Cloud with Microsoft Azure
Big Data Analytics in the Cloud with Microsoft Azure
Mark Kromer
 
Produktdatenmanagement mit Neo4j
Produktdatenmanagement mit Neo4jProduktdatenmanagement mit Neo4j
Produktdatenmanagement mit Neo4j
Neo4j
 
MuleSoft Meetup June London 2023.pptx.pdf
MuleSoft Meetup June London 2023.pptx.pdfMuleSoft Meetup June London 2023.pptx.pdf
MuleSoft Meetup June London 2023.pptx.pdf
AnoopVB2
 
How Celtra Optimizes its Advertising Platform with Databricks
How Celtra Optimizes its Advertising Platformwith DatabricksHow Celtra Optimizes its Advertising Platformwith Databricks
How Celtra Optimizes its Advertising Platform with Databricks
Grega Kespret
 
DataLive conference in Geneva 2018 - Bringing AI to the Data
DataLive conference in Geneva 2018 - Bringing AI to the DataDataLive conference in Geneva 2018 - Bringing AI to the Data
DataLive conference in Geneva 2018 - Bringing AI to the Data
Sasha Lazarevic
 
Integrating Advanced Analytics with Autodesk Solutions
Integrating Advanced Analytics with Autodesk SolutionsIntegrating Advanced Analytics with Autodesk Solutions
Integrating Advanced Analytics with Autodesk Solutions
Rich Hanapole
 
Democratizing AI/ML with GCP - Abishay Rao (Google) at GoDataFest 2019
Democratizing AI/ML with GCP - Abishay Rao (Google) at GoDataFest 2019Democratizing AI/ML with GCP - Abishay Rao (Google) at GoDataFest 2019
Democratizing AI/ML with GCP - Abishay Rao (Google) at GoDataFest 2019
GoDataDriven
 
Digital Reinvention by NRB
Digital Reinvention by NRBDigital Reinvention by NRB
Digital Reinvention by NRB
William Poos
 
Mark Simpson - UKOUG23 - Refactoring Monolithic Oracle Database Applications ...
Mark Simpson - UKOUG23 - Refactoring Monolithic Oracle Database Applications ...Mark Simpson - UKOUG23 - Refactoring Monolithic Oracle Database Applications ...
Mark Simpson - UKOUG23 - Refactoring Monolithic Oracle Database Applications ...
marksimpsongw
 
3 Steps to Accelerate to Cloud
3 Steps to Accelerate to Cloud3 Steps to Accelerate to Cloud
3 Steps to Accelerate to Cloud
RightScale
 
Data Discovery and BI - Is there Really a Difference?
Data Discovery and BI - Is there Really a Difference?Data Discovery and BI - Is there Really a Difference?
Data Discovery and BI - Is there Really a Difference?
Inside Analysis
 
Ad

More from Neo4j (20)

Graphs & GraphRAG - Essential Ingredients for GenAI
Graphs & GraphRAG - Essential Ingredients for GenAIGraphs & GraphRAG - Essential Ingredients for GenAI
Graphs & GraphRAG - Essential Ingredients for GenAI
Neo4j
 
Neo4j Knowledge for Customer Experience.pptx
Neo4j Knowledge for Customer Experience.pptxNeo4j Knowledge for Customer Experience.pptx
Neo4j Knowledge for Customer Experience.pptx
Neo4j
 
GraphTalk New Zealand - The Art of The Possible.pptx
GraphTalk New Zealand - The Art of The Possible.pptxGraphTalk New Zealand - The Art of The Possible.pptx
GraphTalk New Zealand - The Art of The Possible.pptx
Neo4j
 
Neo4j: The Art of the Possible with Graph
Neo4j: The Art of the Possible with GraphNeo4j: The Art of the Possible with Graph
Neo4j: The Art of the Possible with Graph
Neo4j
 
Smarter Knowledge Graphs For Public Sector
Smarter Knowledge Graphs For Public  SectorSmarter Knowledge Graphs For Public  Sector
Smarter Knowledge Graphs For Public Sector
Neo4j
 
GraphRAG and Knowledge Graphs Exploring AI's Future
GraphRAG and Knowledge Graphs Exploring AI's FutureGraphRAG and Knowledge Graphs Exploring AI's Future
GraphRAG and Knowledge Graphs Exploring AI's Future
Neo4j
 
Matinée GenAI & GraphRAG Paris - Décembre 24
Matinée GenAI & GraphRAG Paris - Décembre 24Matinée GenAI & GraphRAG Paris - Décembre 24
Matinée GenAI & GraphRAG Paris - Décembre 24
Neo4j
 
ANZ Presentation: GraphSummit Melbourne 2024
ANZ Presentation: GraphSummit Melbourne 2024ANZ Presentation: GraphSummit Melbourne 2024
ANZ Presentation: GraphSummit Melbourne 2024
Neo4j
 
Google Cloud Presentation GraphSummit Melbourne 2024: Building Generative AI ...
Google Cloud Presentation GraphSummit Melbourne 2024: Building Generative AI ...Google Cloud Presentation GraphSummit Melbourne 2024: Building Generative AI ...
Google Cloud Presentation GraphSummit Melbourne 2024: Building Generative AI ...
Neo4j
 
Telstra Presentation GraphSummit Melbourne: Optimising Business Outcomes with...
Telstra Presentation GraphSummit Melbourne: Optimising Business Outcomes with...Telstra Presentation GraphSummit Melbourne: Optimising Business Outcomes with...
Telstra Presentation GraphSummit Melbourne: Optimising Business Outcomes with...
Neo4j
 
Hands-On GraphRAG Workshop: GraphSummit Melbourne 2024
Hands-On GraphRAG Workshop: GraphSummit Melbourne 2024Hands-On GraphRAG Workshop: GraphSummit Melbourne 2024
Hands-On GraphRAG Workshop: GraphSummit Melbourne 2024
Neo4j
 
Démonstration Digital Twin Building Wire Management
Démonstration Digital Twin Building Wire ManagementDémonstration Digital Twin Building Wire Management
Démonstration Digital Twin Building Wire Management
Neo4j
 
Swiss Life - Les graphes au service de la détection de fraude dans le domaine...
Swiss Life - Les graphes au service de la détection de fraude dans le domaine...Swiss Life - Les graphes au service de la détection de fraude dans le domaine...
Swiss Life - Les graphes au service de la détection de fraude dans le domaine...
Neo4j
 
Démonstration Supply Chain - GraphTalk Paris
Démonstration Supply Chain - GraphTalk ParisDémonstration Supply Chain - GraphTalk Paris
Démonstration Supply Chain - GraphTalk Paris
Neo4j
 
The Art of Possible - GraphTalk Paris Opening Session
The Art of Possible - GraphTalk Paris Opening SessionThe Art of Possible - GraphTalk Paris Opening Session
The Art of Possible - GraphTalk Paris Opening Session
Neo4j
 
How Siemens bolstered supply chain resilience with graph-powered AI insights ...
How Siemens bolstered supply chain resilience with graph-powered AI insights ...How Siemens bolstered supply chain resilience with graph-powered AI insights ...
How Siemens bolstered supply chain resilience with graph-powered AI insights ...
Neo4j
 
Knowledge Graphs for AI-Ready Data and Enterprise Deployment - Gartner IT Sym...
Knowledge Graphs for AI-Ready Data and Enterprise Deployment - Gartner IT Sym...Knowledge Graphs for AI-Ready Data and Enterprise Deployment - Gartner IT Sym...
Knowledge Graphs for AI-Ready Data and Enterprise Deployment - Gartner IT Sym...
Neo4j
 
Neo4j Graph Data Modelling Session - GraphTalk
Neo4j Graph Data Modelling Session - GraphTalkNeo4j Graph Data Modelling Session - GraphTalk
Neo4j Graph Data Modelling Session - GraphTalk
Neo4j
 
Neo4j: The Art of Possible with Graph Technology
Neo4j: The Art of Possible with Graph TechnologyNeo4j: The Art of Possible with Graph Technology
Neo4j: The Art of Possible with Graph Technology
Neo4j
 
Astra Zeneca: How KG and GenAI Revolutionise Biopharma and Life Sciences
Astra Zeneca: How KG and GenAI Revolutionise Biopharma and Life SciencesAstra Zeneca: How KG and GenAI Revolutionise Biopharma and Life Sciences
Astra Zeneca: How KG and GenAI Revolutionise Biopharma and Life Sciences
Neo4j
 
Graphs & GraphRAG - Essential Ingredients for GenAI
Graphs & GraphRAG - Essential Ingredients for GenAIGraphs & GraphRAG - Essential Ingredients for GenAI
Graphs & GraphRAG - Essential Ingredients for GenAI
Neo4j
 
Neo4j Knowledge for Customer Experience.pptx
Neo4j Knowledge for Customer Experience.pptxNeo4j Knowledge for Customer Experience.pptx
Neo4j Knowledge for Customer Experience.pptx
Neo4j
 
GraphTalk New Zealand - The Art of The Possible.pptx
GraphTalk New Zealand - The Art of The Possible.pptxGraphTalk New Zealand - The Art of The Possible.pptx
GraphTalk New Zealand - The Art of The Possible.pptx
Neo4j
 
Neo4j: The Art of the Possible with Graph
Neo4j: The Art of the Possible with GraphNeo4j: The Art of the Possible with Graph
Neo4j: The Art of the Possible with Graph
Neo4j
 
Smarter Knowledge Graphs For Public Sector
Smarter Knowledge Graphs For Public  SectorSmarter Knowledge Graphs For Public  Sector
Smarter Knowledge Graphs For Public Sector
Neo4j
 
GraphRAG and Knowledge Graphs Exploring AI's Future
GraphRAG and Knowledge Graphs Exploring AI's FutureGraphRAG and Knowledge Graphs Exploring AI's Future
GraphRAG and Knowledge Graphs Exploring AI's Future
Neo4j
 
Matinée GenAI & GraphRAG Paris - Décembre 24
Matinée GenAI & GraphRAG Paris - Décembre 24Matinée GenAI & GraphRAG Paris - Décembre 24
Matinée GenAI & GraphRAG Paris - Décembre 24
Neo4j
 
ANZ Presentation: GraphSummit Melbourne 2024
ANZ Presentation: GraphSummit Melbourne 2024ANZ Presentation: GraphSummit Melbourne 2024
ANZ Presentation: GraphSummit Melbourne 2024
Neo4j
 
Google Cloud Presentation GraphSummit Melbourne 2024: Building Generative AI ...
Google Cloud Presentation GraphSummit Melbourne 2024: Building Generative AI ...Google Cloud Presentation GraphSummit Melbourne 2024: Building Generative AI ...
Google Cloud Presentation GraphSummit Melbourne 2024: Building Generative AI ...
Neo4j
 
Telstra Presentation GraphSummit Melbourne: Optimising Business Outcomes with...
Telstra Presentation GraphSummit Melbourne: Optimising Business Outcomes with...Telstra Presentation GraphSummit Melbourne: Optimising Business Outcomes with...
Telstra Presentation GraphSummit Melbourne: Optimising Business Outcomes with...
Neo4j
 
Hands-On GraphRAG Workshop: GraphSummit Melbourne 2024
Hands-On GraphRAG Workshop: GraphSummit Melbourne 2024Hands-On GraphRAG Workshop: GraphSummit Melbourne 2024
Hands-On GraphRAG Workshop: GraphSummit Melbourne 2024
Neo4j
 
Démonstration Digital Twin Building Wire Management
Démonstration Digital Twin Building Wire ManagementDémonstration Digital Twin Building Wire Management
Démonstration Digital Twin Building Wire Management
Neo4j
 
Swiss Life - Les graphes au service de la détection de fraude dans le domaine...
Swiss Life - Les graphes au service de la détection de fraude dans le domaine...Swiss Life - Les graphes au service de la détection de fraude dans le domaine...
Swiss Life - Les graphes au service de la détection de fraude dans le domaine...
Neo4j
 
Démonstration Supply Chain - GraphTalk Paris
Démonstration Supply Chain - GraphTalk ParisDémonstration Supply Chain - GraphTalk Paris
Démonstration Supply Chain - GraphTalk Paris
Neo4j
 
The Art of Possible - GraphTalk Paris Opening Session
The Art of Possible - GraphTalk Paris Opening SessionThe Art of Possible - GraphTalk Paris Opening Session
The Art of Possible - GraphTalk Paris Opening Session
Neo4j
 
How Siemens bolstered supply chain resilience with graph-powered AI insights ...
How Siemens bolstered supply chain resilience with graph-powered AI insights ...How Siemens bolstered supply chain resilience with graph-powered AI insights ...
How Siemens bolstered supply chain resilience with graph-powered AI insights ...
Neo4j
 
Knowledge Graphs for AI-Ready Data and Enterprise Deployment - Gartner IT Sym...
Knowledge Graphs for AI-Ready Data and Enterprise Deployment - Gartner IT Sym...Knowledge Graphs for AI-Ready Data and Enterprise Deployment - Gartner IT Sym...
Knowledge Graphs for AI-Ready Data and Enterprise Deployment - Gartner IT Sym...
Neo4j
 
Neo4j Graph Data Modelling Session - GraphTalk
Neo4j Graph Data Modelling Session - GraphTalkNeo4j Graph Data Modelling Session - GraphTalk
Neo4j Graph Data Modelling Session - GraphTalk
Neo4j
 
Neo4j: The Art of Possible with Graph Technology
Neo4j: The Art of Possible with Graph TechnologyNeo4j: The Art of Possible with Graph Technology
Neo4j: The Art of Possible with Graph Technology
Neo4j
 
Astra Zeneca: How KG and GenAI Revolutionise Biopharma and Life Sciences
Astra Zeneca: How KG and GenAI Revolutionise Biopharma and Life SciencesAstra Zeneca: How KG and GenAI Revolutionise Biopharma and Life Sciences
Astra Zeneca: How KG and GenAI Revolutionise Biopharma and Life Sciences
Neo4j
 
Ad

Recently uploaded (20)

How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 

Your Roadmap for An Enterprise Graph Strategy

  • 1. Roadmap for Enterprise Graph Strategy Michael Moore, Ph.D. Executive Director, Enterprise Knowledge Graphs + AI EY Performance Improvement Advisory [email protected] July 18, 2019
  • 2. The Database Landscape is Changing SQL RDBMS Column Document Key Value Graph SearchServerlessStreams In-Memory Traditional Databases & Data Warehousing NoSQL Databases Data Services & Data Processing Batch MR Blockchain 2
  • 3. Scale Out  Scale Up Continued increase in capacity and dropping compute costs are challenging scale-out commodity server assumptions, particularly for database workloads 2018 3
  • 4. Rankings Change in Popularity (db-engines.com) *Proprietary method based on general interest, mentions, relevance in social networks, frequency of technical discussions etc. Graph DBs 4
  • 5. “We send email to people, so they will visit our website and buy our product” A Database specifically designed for creating, storing, and querying graphs MATCH (e:Email)-[:SENT_TO]-> (p:Person {fullName: ’Steve Newman'})-[:VISITED]-> (w:Website)<-[:SOLD_ON]-(pr:Product)<-[:PURCHASED]-(p) RETURN * Semantic Representation Graph Representation Physical Representation ► Graphs have all possible logical relationships precomputed, much, much faster than SQL ► Graphs are fast and easy understand, develop and use ► Graphs integrate well with applications and data sources, great for real-time digital workloads ► Graphs surface, unify and mobilize data held in silos and data lakes What is a Graph Database? 5
  • 6. This is a Graph. 6
  • 7. This is a Graph.7
  • 8. This is a Graph. 8
  • 9. Graph Use Cases ► Customer 360° ► Recommendation Engines ► Marketing Attribution ► Enterprise Search ► Fraud Detection ► Master Data Management ► Supply Chain ► Geolocation & Routing ► Access & Asset Control ► Social Networks ► IT & Network Management 9
  • 10. Real-Time, Evolving Graph View Across the Business Data Ingestion, Cleansing, Reduction & Pipelining Real-time BI & ScorecardsMobile & Web Applications Data Science access control, metadata, recos, monitoring KPIs, targets, reporting, drill down/across attribution, similarity, fraud, pathing, cliques Marketing ROI & Digital Experience (CMO) Data Governance & Data Quality (CDO) Operations & Risk Management (CFO) Account Coverage & Customer LTV (CRO) Product Marketing & Recommendations (CPO) UNSTRUCTURED LEGACY SNAPSHOTS CONFORMED & CURATED STREAMS Graphs Accelerate Enterprise Data Mobilization 10
  • 11. 11Roadmap for Enterprise Graph Strategy Small Team: • Graph Architect • Data Engineer • Full-stack Developer • Data Scientist • Report Developer Problem / Scope What will the graph solve? Production BuildCloud PilotLocalhost POCGraphy Problem Business need, Data sources Data modeling, API, example queries Data snapshot, reference architecture, API suite Hardening, scheduled & stream ETL, Live UX Stakeholder Input Graph Design Data Work APIs / Data Services Integration / Refinement Scale / Harden / Run Validate What questions can now be answered? Connect Does the data support the graph model and semantics? Mobilize What data does the new experience need? Use Cases What is the feedback from the business on how well the graph solves the use case? Deploy What monitoring, testing, process needs to be put in place to achieve a robust SLA? Key Conversations
  • 12. Talk to the business, pick a graphy problem What is a “Graphy” problem? • Requires many entities (eg many SQL tables, 360° views) • Involves recursion (eg. SQL self joins) • Has complex, potentially colliding, hierarchies (eg SQL 1 to many, many-to-many) • Based on informatics of the relationships themselves (eg collaborative filtering shared relationship counts, shortest path segment summations for wayfinding, cost/time minimization for supply chain, money flows for finance) • Requires mapping, direct or indirect across data sources (eg data lake unification) • Demands fast query results (eg digital applications, search) • Most importantly, go talk to the business – what are the analytics you’d like to have or customer experiences you’d like to light up – but can’t because of our current data limitations? • What’s the most critical data that you’d like to see connected? • What would be an example demo that you’d find compelling (report/analysis/experience) 12 Production BuildCloud PilotLocalhost POCGraphy Problem
  • 13. Get comfortable with Neo4j – don’t need to become an expert • Get hands on – be fearless! Neo4j is the easiest graph database to learn. • Install Neo4j, Apoc procedures, set the following in Manage/Settings #Apoc Plugin Configurations apoc.import.file.enabled=true apoc.export.file.enabled=true dbms.security.procedures.unrestricted=*.* • Go through the Cypher lessons, and learn basics graph modeling and to load csv LOAD CSV WITH HEADERS FROM "file:///movies.csv" AS row CALL apoc.load.csv(url,{}) YIELD map • Any reasonably sized laptop should be able to handle a graph with several million nodes and relationships You will quickly see some of the significant benefits of connected data. • For extra credit you can go onto github/neo4j-examples and download starter applications for your favorite languages. 13 Production BuildCloud PilotLocalhost POCGraphy Problem
  • 14. Design and build your POC Graph • Start small and simple, limit yourself to 3-4 data sources, shallow extracts. Snapshot SQL top queries for a pool of linked transactions • Use common sense, business-friendly naming for your node labels and relationship types. You’ll iterate this model using input from the business, and the model should be clear and readable • Don’t be afraid of recursion (Employee)-[:REPORTS_TO]->(Employee) who is the boss? • Don’t get too hung up on whether something should be a node label, property, or relationship. Just keep in mind that node labels define set members, and that it’s faster to search along relationships (traversal) than properties (full graph scan) • You can use call db.schema() to see the graph schema, and we often use http://apcjones.com/arrows/# to build illustrative schemas for conversations with business stakeholders • Test your graph design by writing some example queries, do this with your business stakeholder • Does this look right to you – is this how you would whiteboard this process? Am I missing any key entities or relationships? 14 Production BuildCloud PilotLocalhost POCGraphy Problem
  • 15. Example Knowledge Graph Schema for Spend and Supply Chain Analytics Supplier 360° Spend Graph • Accurately captures the sourcing complexity of products and services • Enables more insightful indirect spend analytics for products and services • Reconciles line-item detail to top parent company, across intermediate entities • Extensible for audit, fraud detection, tracking & traceability • Integrates with data lake, reporting platforms and transactional applications Product Supply Chain Service Providers Procurement Top Parent Line Item Detail Tracking and Traceability Invoicing Data fabric composed of nodes and relationships that connect and mobilize data, using consistent semantics 15
  • 16. 1 Example Customer 360° Graph Schema Account Transactions Segments Product Interactions 16 Customer 360° Graph • Accurately captures full range of customer touchpoints across enterprise surface area • Enables more insightful indirect spend analytics for products and services • Reconciles product usage, marketing interactions and digital identity • Integrates with execution layer for AI driven UX
  • 17. Example B2B MDM Graph Schema Product Core Data Elements Customer & Contact Orders 17 Master Data Management Graph Schema • Accurately captures data lineage for core identity components • Provides ”Golden Record” from multi-source probabilistic authority scores • Relates contacts, customers, orders and products without loss of fidelity • Enables detailed whitespace analysis and next best sales action • Integrates with data lake and CRM applications
  • 18. Example Polyglot Discovery Graph Schema Searchable Pointers to Unstructured blobs Text & Metrics from Semi-Structured data Structured Data and Derived Entities 18 Data Discovery Graph Schema • Connects structured, semi- structured and unstructured data across polyglot storage • Accurately handles complex data and documents hierarchies • Enables full text search in graph or in document store, directly and via NLP • Provides source document access through blob URLs • Integrates with data lake, reporting platforms and transactional applications
  • 19. Design and build your POC Graph 19 Production BuildCloud PilotLocalhost POCGraphy Problem • Breakthrough queries • Graph algorithms • Data unification & mobilization • Use-case specific (Customer 360, Supply Chain, Fraud, Reco) • Make a localhost graph->app stack so you understand how parameterized Cypher & Bolt drivers work • Use any of the neo4j-examples to jumpstart • If you don’t want to spend time creating a REST API, check out GraphQL and the GRAND stack (https://github.com/grand- stack/grand-stack-starter) • Focus on the business value of the new graph enabled analytics – We can now know this to make better decisions We can now do this for our customers
  • 20. 20Neo4j - Power BI Integration with GraphQL Graph Database Neo4j GraphQL API 2 3 4 1. Client issues GraphQL query 2. GraphQL API sends Cypher query to Neo4j 3. Response data sent to Client 4. Data updated in PBI report GraphQL schema, registered in Neo4j m query cURL wrapper PBI report 1
  • 21. Neo4j – React Integration with GraphQL (GRAND Stack) 21
  • 22. Pick and build your demo application for your snapshot graph 22 Production BuildCloud PilotLocalhost POCGraphy Problem • Pick a cloud or on-prem • Use Marketplace images if possible • Start with a single instance VM for Neo4j, (~ RAM 50% of SQL size) • Attach external drives so you can scale the server • Determine your stack architecture • Understand your data processing requirements • Install Python – very good for performing batch operations, pip neo4j-driver • Leverage Neo4j’s high speed loader • Determine what cleansing needs to occur • If you need help reach out to SI partner or Neo4j services
  • 23. Pick and build your demo application for your snapshot graph 23 • MVP data domains • Graph database, app-informed • Simplest data service • MVP app experience • Add new experiences, same data • Add new data domains Nodejs, .Net, Python, React, Swift, Tableau, etc. REST, Bolt Production BuildCloud PilotLocalhost POCGraphy Problem Michael’s I-Frame model For Graph ROI  Accelerate Graph-driven User Experiences
  • 24. CRM Reporting (Tableau, PBI) Blobs FilesQueuesTables Azure Cloud Storage AI Sandbox (Azure ML Studio) Stream ETL (Azure Event Hub) Audience Manager Campaign Target Experience Manager Analytics Marketo Engage Adobe Experience Cloud Scheduled ETL Data Reduction (Azure Spark) Cloud Data Lake In-Memory Document Store Data Models (Azure Analysis Services) Data Catalog (Azure Data Catalog) ERP AZURE VPC In-Memory Knowledge Graph Data Services APIs REST Ingest Batch StoreIngest Real-time SearchConsolidate Connect & Unify Mobilize Semantic Layer Analytics Layer Azure Data Factory Automated Reports and Dashboards Consistent Metrics Data Discovery Retention Models Deep Learning In-Memory Sessionization Data Aggregation Syndicated Data and Analytics Knowledge Graph Customer/Contact 360° View Marketing Attribution Recommendations Real-time Document Search Elastic SQL Repository for Curated & Conformed Data Data Staging Elastic Repository for Raw and Unstructured Data Real Time Updates Customer Events Automated Data Loading Triggered Marketing Consistent Experience Example Graph Architecture Execution
  • 25. Reporting (Tableau,QuickSight) S3 Blobs FilesQueuesEBS Tables AWS Cloud Storage Data Discovery (AWS Athena) Stream ETL (AWS Kinesis) Audience Manager Campaign Target Experience Manager Analytics Marketo Engage Adobe Experience Cloud (Azure) Scheduled ETL (AWS Data Pipeline, PDI Kettle) Data Reduction (AWS EMR) Cloud Data Lake In-Memory Document Store Machine Learning (AWS SageMaker) Data Catalog (AWS Glue) ERP AWS VPC In-Memory Knowledge Graph Data Services APIs REST Ingest Batch StoreIngest Real-time SearchConsolidate Connect & Unify Mobilize Execution Semantic Layer Analytics Layer Example Graph Architecture Automated Reports and Dashboards Retention Models Deep Learning Data Discovery Consistent Data Models Sessionization Data Aggregation Knowledge Graph Customer/Contact 360° View Marketing Attribution Recommendations Real-time Document Search Elastic SQL Repository for Curated & Conformed Data Data Staging Elastic Repository for Raw and Unstructured Data CRM Real Time Updates Customer Events Automated Data Loading Triggered Marketing Consistent Experience Syndicated Data and Analytics
  • 26. Enterprise Knowledge Graph Development with Neo4j • Locate and validate data lake tables • Design test graph schema • Estimate graph size from nodes, relationships and properties • Configure Neo4j server to minimize SSD disk contention • Prepare Hive queries to generate graph-form tables (nodes, relationships) • Validate key uniqueness, string handling, character types, relationship mappings • Export graph form tables to gzip csv files • Iteratively test data loader scripts, file by file • On successful completion of hydration, apply constraints and indexes, refactor as needed Graph-form TablesData Lake Tables CSV.gz Files Load Script Data Store EXTRACT EXTRACT HIGH SPEED LOADER IMPORT DONE in 1h 29m 16s 530ms. Imported: 458356377 nodes 2176603843 relationships 9064981812 properties Peak memory usage: 9.46 GB 26
  • 27. Polyglot Graph Data Processing Extract XML, Convert to JSON, Load JSON with Azure Blob URI Extract and Load Azure Blob URIs Extract and Load • Document Metadata • Named Entities • Map Relationships • Text Summaries Graph Analytics & Queries Couchbase Full Text Search Pointers to Azure Blob URIs Leveraging fit-for-purpose storage: Graph storage for unified many-to-many access to cross-domain data Document storage for searchable access to semi-structured data Blob storage repository for large, raw and unstructured data 37,157 blobs 5.5 TB Unstructured: Semi-Structured: Load CSV to Graph Structured: 20,573 JSONs 5 GB Reports/Applications Data Mobilization and Graph Unification – Full Lineage and Auditability 215K nodes & relationships 1.5 GB 27
  • 28. Production BuildCloud PilotLocalhost POCGraphy Problem Go to Production 28 • Follow your IT best practices • Security, assume you’ll be breached • Deploy full environment set – Prod cluster, Stg cluster, Test, Dev • DevOps - leverage Jenkins, Ansible • Wrap your solution in test automation • Do load testing against your APIs to look for additional optimization opportunities (Gatling) • Monitor your logs (Splunk, Dynatrace) • Monitor your common queries, refactor or reindex as needed, optimize for speed • Leverage the I-Frame Model to provide more value
  • 29. 29Roadmap for Enterprise Graph Strategy Small Team: • Graph Architect • Data Engineer • Full-stack Developer • Data Scientist • Report Developer Problem / Scope What will the graph solve? Production BuildCloud PilotLocalhost POCGraphy Problem Business need, Data sources Data modeling, API, example queries Data snapshot, reference architecture, API suite Hardening, scheduled & stream ETL, Live UX Stakeholder Input Graph Design Data Work APIs / Data Services Integration / Refinement Scale / Harden / Run Validate What questions can now be answered? Connect Does the data support the graph model and semantics? Mobilize What data does the new experience need? Use Cases What is the feedback from the business on how well the graph solves the use case? Deploy What monitoring, testing, process needs to be put in place to achieve a robust SLA? Key Conversations
  • 30. EY Cross-Sector Graph Experience: MDM, 360°, AML/Fraud, Recommenders 30 Fortune 100 Tech Company Use Case: Global B2B Account 360° view and marketing attribution Approach: Neo4j graph with 500M nodes and 2.2B relationships, representing all known business accounts, contacts and marketing touches. Mastered data from 17disparate transactional sources in Azure Data Lake. Supported in- graph analytics for marketing attribution and next best action recommendations across global geographies Duration: 16 weeks to working graph Fortune 100 Footwear Company Use Case: Converged Brick & Mortar + Online Shopper 360° View Approach: Neo4j graph with 2B nodes and relationships, representing sales transactions for 40M shoppers across 275 physical stores and the ecommerce platform. Algorithmic extraction and profiling from raw XML records in AWS Hadoop, MDM record concordance and in- graph analytics for product associations, store analytics and recommendation services. Duration: 12 weeks to working graph, ongoing project through 2018 Fortune 500 Cruise Line Company Use Case: Shipboard and Shoreside Recommendation Engine Approach: Neo4j graph deployable to shipboard VM Ware data centers, with streaming updates from large shoreside Neo4j graph integrating data from Azure Cerebro, Adobe Experience Manager and legacy transactional systems. In-graph analytics,services API, recommendation engine for next best activity for passengers surfaced via mobile app Duration: 12 weeks to working graph, ongoing project through 2018 Fortune 100 Investment Firm Use Case: Enhanced Anti-Money Laundering and Fraud Detection using Graph+AI Approach: Neo4j graph of account 360° view representing activity of 2M accounts over 4 years. MDM and entity extraction for account and party identity elements from enterprise Oracle system. Network clustering, feature engineering and graph embedding in TensorFlow deep learning classifier for suspicious activity patterns across accounts and between parties. Duration: 16 weeks to working graph Fortune 100 Tech Company Use Case: B2B Local Marketing Events Recommendation Engine Approach: Neo4j graph and personalized next best event recommendation engine for B2B field marketers. Reconciles physical and digital event attendees with corporate account structures for 10K accounts and 5M contacts Entities mastered from transactional data in SQLServer and Azure Data Lake. Microservices APIs support data syndication to martech applications and PowerBI reporting. Duration: 10 weeks to working graph
  • 31. Better Questions How can I get more business value and deeper insights from the data I already have? How can I get a better understanding of my customers to create more relevant experiences? How can I more effectively mobilize and syndicate the data I’m ingesting? What is the next best action I can take? Thank You! 31
  • 32. Michael Moore, Ph.D. Executive Director ► Michael Moore is an Executive Director and Practice Lead for Graph + AI in EY’s Tech Consulting Emerging Technology (ET) Group ► Joined EY in 2017, based in the Seattle, WA office ► Ph.D. University of California, Berkeley ► B.S. & B.A. University of California, Santa Cruz ► Society Consulting – Graph Architect Schema, ETL & systems design for a high-performance Neo4j graph database encompassing the totality of Microsoft’s B2B data on Azure VM. Graph database supports multi-touch marketing attribution analytics and multi-dimensional event-based audience segmentation & recommendations for direct marketing. Provided POC graph reporting and visualization interfaces. Neo4j Enterprise edition, Python, Node.js, nGraph, Javascript. ► Microsoft Corporation – General Manager Management of core BI infrastructure and measurement capabilities supporting Microsoft's global marketing budget cascade, campaign reporting, pipeline reporting, incentive reporting, ROMI reporting, social and web analytics on Microsoft.com for the Global Marketing Operations team. Management of complex projects across multiple subsidiaries, agencies and vendors. Strategic focus on foundational database, digital and social marketing capabilities including: marketing ROI, customer & channel partner engagement, marketing conversion, sales pipeline, dynamic personalization, data mining, predictive modeling, behavioral segmentation, privacy governance, web enablement, tracking & measurement, and internal & external data quality, and instrumentation process control. ► Grey San Francisco – VP Analytics Responsible for ongoing campaign reporting, ROI analysis, creative and placement optimizations for agency clients. Architected and deployed an enterprise OLAP reporting solution on Oracle RAC / Microstrategy to improve quality and efficiency of analytics operations. Provided advanced analytical services to clients in retail, tech, banking and automotive, including consulting, regression modeling and data mining. Profile Select professional experience Skills and tool knowledge ► Michael Moore, Ph.D. is an Executive Director in the Advisory Services practice of Ernst & Young LLP. He is the National practice lead for Enterprise Knowledge Graphs + AI in EY’s Data and Analytics (DnA) Group. ► Michael has industry and solution in customer experience, customer service, e-commerce, ad-serving, web and media analytics, consumer loyalty and churn, marketing optimization, enterprise and partner pipeline, and social media ► He specializes in graph database architecture, graph-based advanced analytics, machine learning and recommender systems. Michael is certified Neo4j Professional, and has active enterprise graph engagements in financial services, tech, oil & gas, retail and hospitality sectors. 32