SlideShare a Scribd company logo
By
A.Sujatha M.Sc.,Phil.,PGDCA.,
Department of Mathematics
Transforms (18UMTS41)
– Applications of Z-Transforms in linear difference
equation
Applications of difference equations
Working Procedure:
To solve a linear difference equation with constant coefficient by Z-transform.
Step 1: Take the Z-transform on both sides of the difference equations using the formulae and the given conditions.
Step 2: Transpose all terms without 𝑈(𝑧) to the right.
Step 3: Divide by the coefficient of 𝑈(𝑧), getting 𝑈(𝑧) as a function of z.
Step 4: Express this function in terms of the Z-transform of known functions and take the inverse Z-transform on
both sides.
This gives 𝑢 𝑛 as a function of n which is the desired solution.
Example:
Using the Z-transform, solve 𝑢 𝑛+2 − 2𝑢 𝑛+1 + 𝑢 𝑛 = 3𝑛 + 5
Solution:
If 𝑍(𝑢 𝑛) = 𝑈(𝑧) then 𝑍(𝑢 𝑛+1) = 𝑧[𝑈(𝑧) − 𝑢0]
𝑍(𝑢 𝑛+2) = 𝑧2[𝑈(𝑧) − 𝑢0 − 𝑢1 𝑧−1]
𝑧
( 𝑧−1)2
+ 5
𝑧
𝑧−1
𝑍(3𝑛 + 5) = 3𝑍(𝑛) + 5𝑍(1) =3
[ since 𝑍(𝑛) =
𝑧
( 𝑧−1)2
, 𝑍(1) =
𝑧−1
𝑧
]
Given equation becomes
𝑢 𝑛+2 − 2𝑢 𝑛+1 + 𝑢 𝑛 = 3𝑛+ 5 → 𝟏
Applying Z-transform on both sides in equation 1 we get
𝑍(𝑢 𝑛+2) − 2𝑍(𝑢 𝑛+1) + 𝑍(𝑢 𝑛) = 𝑍(3𝑛 +5)
𝑧2[𝑈(𝑧) − 𝑢0 − 𝑢1 𝑧−1] − 2𝑧[𝑈(𝑧) − 𝑢0] + 𝑈(𝑧) = 3
𝑧
( 𝑧−1)2
+ 5
𝑧
𝑧−1
0𝑈(𝑧)[𝑧2 − 2𝑧 + 1] − 𝑢 [𝑧2 − 2𝑧]−𝑧2 𝑢1 𝑧
1
= 3𝑧+5𝑧( 𝑧−1)
( 𝑧−1)2
2
𝑈(𝑧)[𝑧 − 2𝑧 + 1] =
25𝑧 −2𝑧
( 𝑧−1)2
2
0 1+ 𝑢 [𝑧 − 2𝑧] + 𝑢 𝑧
2
𝑈(𝑧)(𝑧 − 1) =
25𝑧 −2𝑧
( 𝑧−1)2
2
0 1+ 𝑢 [𝑧 − 2𝑧] + 𝑢 𝑧
2 2
𝑈( 𝑧) = 5𝑧 −2𝑧
+ 𝑢0[ 𝑧 −2𝑧]
+ 𝑢1 𝑧
( 𝑧−1)4 ( 𝑧−1)2 ( 𝑧−1)2
On inversion we get
𝑢 𝑛 = 𝑍−1 [
5𝑧2 −2𝑧
(𝑧 − 1)4
] + 𝑢0 𝑍−1 [
𝑧2 − 2𝑧
(𝑧 − 1)2
] + 𝑢1 𝑍−1 [
𝑧
(𝑧 − 1)2
] ⟶ 𝟐
Note that
𝑍(1) =
𝑧
𝑧 − 1
, 𝑍(𝑛) =
𝑧
(𝑧 − 1)2
, 𝑍(𝑛2) =
𝑧2 + 𝑧
(𝑧 − 1)3
, 𝑍(𝑛3) =
𝑧3 + 4𝑧2 + 𝑧
(𝑧 − 1)4
⟶ 𝟑
Now consider
5𝑧2−2𝑧 𝑧3+4𝑧2+
𝑧 ( 𝑧−1)4 = 𝐴 [ ( 𝑧−1)4
𝑧2+𝑧 𝑧 𝑧
𝑧−1
] + 𝐵 [ ] + 𝐶 [ ] + 𝐷[ ]
( 𝑧−1)3 ( 𝑧−1)2
= 𝐴 [ ( 𝑧−1)4
] + 𝐵[
𝑧3+4𝑧2+𝑧 (𝑧2+𝑧)(𝑧−1) 𝑧( 𝑧−1)2 𝑧( 𝑧−1)3
( 𝑧−1)4 ] + 𝐶 [ ( 𝑧−1)4 ] + 𝐷[ ( 𝑧−1)4]
= 𝐴 [
𝑧3+4𝑧2+𝑧
( 𝑧−1)4
] + 𝐵[ ( 𝑧−1)4
𝑧3−𝑧2+𝑧2−𝑧) 𝑧(𝑧2−2𝑧+1)
( 𝑧−1)4
] + 𝐶 [ ] + 𝐷[
𝑧(𝑧3−3𝑧2+3𝑧−1)
( 𝑧−1)4
]
5𝑧2−2𝑧 𝑧3+4𝑧2+
𝑧 ( 𝑧−1)4 = 𝐴 [ ( 𝑧−1)4
] + 𝐵 [ 𝑧3−𝑧
] + 𝐶 [ 𝑧3−2𝑧2+𝑍
( 𝑧−1)4 ( 𝑧−1)4 ] + 𝐷[
𝑧4−3𝑧3+3𝑧2−𝑧
( 𝑧−1)4
]
Equating the like powers of z we get
𝐷 = 0 (coefficients of 𝑧4)
𝐴 + 𝐵 + 𝐶 − 3𝐷 = 0(coefficients of 𝑧3)
⇒ 𝐴 + 𝐵 + 𝐶 = 0 ⟶ 𝟒
4𝐴 + 0𝐵 − 2𝐶 + 3𝐷 = 5(coefficients of 𝑧2)
⇒ 4𝐴 − 2𝐶 = 5 ⟶ 𝟓
𝐴 − 𝐵 + 𝐶 − 𝐷 = −2(coefficients of𝑧)
⇒ 𝐴 − 𝐵 + 𝐶 = −2 ⟶ 𝟔
Solve equation 4 and 6 we get 𝐵 = 1
Put 𝐵 = 1 equation 4 we get 𝐴 + 𝐶 = −1 ⟶ 𝟕
Solve equation 3 and 2 ×equation 7 we get 𝐴 = 1
2
Put 𝐴 and 𝐵 value in equation 4 we get 𝐶 = − 3
2
2
1 3
2
∴ 𝐴 = , 𝐵 = 1, 𝐶 = − , 𝐷 = 0
2 3 2
∴ 5𝑧 −2𝑧 1 𝑧 +4𝑧 +𝑧
( 𝑧−1)4 = 2
. [ ( 𝑧−1)4
𝑧2+𝑧 3 𝑧 𝑧
𝑧−1
] + 1. [ ] − . [ ] + 0. [ ]
( 𝑧−1)3 2 ( 𝑧−1)2
∴ 𝑍−1 5𝑧2−2𝑧 1 −1[ ] = 𝑍 [
( 𝑧−1)4 2 ( 𝑧−1)4
] + 𝑍−1𝑧3+4𝑧2+𝑧 𝑧2+𝑧 3 −1 𝑧
[ ] − 𝑍 [ ]
( 𝑧−1)3 2 ( 𝑧−1)2
1 3 2 3
2 2
= 𝑛 + 𝑛 − 𝑛 by equation3
1
2
2
= 𝑛(𝑛 + 2𝑛 − 3)
1
2
( )= 𝑛 𝑛 − 1 (𝑛 + 3)
2
Consider 𝑧 −2𝑧
= 𝐴 + 𝐵
𝑧 𝑧
( 𝑧−1)2 𝑧−1 ( 𝑧−1)2
= 𝐴 𝑧(𝑧−1)
+ 𝐵 𝑧(𝑧−1)
𝑧−1 ( 𝑧−1)2
2 2
∴ 𝑧 −2𝑧
= 𝐴 𝑧 −2𝑧
+ 𝐵 𝑧
( 𝑧−1)2 𝑧−1 𝑧−1
Equating the like powers of z we get
𝐴 + 0 = 1(coefficients of 𝑧2) ∴ 𝐴 = 1
−𝐴 + 𝐵 = −2(coefficients of 𝑧)
⇒ 𝐵 = −1
2 2
∴ 𝑧 −2𝑧
= 1. 𝑧 −2𝑧
− 1. 𝑧
( 𝑧−1)2 𝑧−1 𝑧−1
2
∴ 𝑍−1 [ 𝑧 −2𝑧
] = 𝑍−1 [ 𝑧
] − 𝑍−1[
( 𝑧−1)2 𝑧−1
𝑧
( 𝑧−1)2
] = 1 − 𝑛 (by equation 3)
and 𝑍−1 [
𝑧
( 𝑧−1)2
] = 𝑛
∴ equation 2 becomes
𝑛
1
2
( )( ) ( )𝑢 = 𝑛 𝑛 − 1 𝑛 + 3 + 𝑢0 1 − 𝑛 + 𝑢1 𝑛
1
2
( )( )= 𝑛 𝑛 − 1 𝑛 + 3 + 𝑢0 + (𝑢1 − 𝑢0)𝑛
2
= 1
𝑛(𝑛 − 1)(𝑛 + 3) + 𝑐 + 𝑐 𝑛 where 𝑐 = 𝑢 , 𝑐 = 𝑢 − 𝑢0 1 0 0 1 1 0

More Related Content

What's hot (20)

DOCX
Btech_II_ engineering mathematics_unit4
Rai University
 
DOCX
B.tech ii unit-3 material multiple integration
Rai University
 
DOCX
3 capitulo-iii-matriz-asociada-sem-13-t-l-c
FernandoDanielMamani1
 
DOCX
B.tech ii unit-5 material vector integration
Rai University
 
DOCX
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
Rai University
 
DOCX
Btech_II_ engineering mathematics_unit2
Rai University
 
PDF
B.Tech-II_Unit-II
Kundan Kumar
 
PDF
B.Tech-II_Unit-IV
Kundan Kumar
 
PDF
B.Tech-II_Unit-V
Kundan Kumar
 
PPTX
Numerical solution of system of linear equations
reach2arkaELECTRICAL
 
DOCX
Fismat chapter 4
MAY NURHAYATI
 
DOCX
3 capitulo-iii-matriz-asociada-sem-15-t-l-e
FernandoDanielMamani1
 
PPTX
GAUSS ELIMINATION METHOD
reach2arkaELECTRICAL
 
DOCX
B.tech ii unit-2 material beta gamma function
Rai University
 
DOC
Gamma beta functions-1
Selvaraj John
 
PDF
B.Tech-II_Unit-III
Kundan Kumar
 
PDF
Bc4301300308
IJERA Editor
 
DOCX
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau
 
PDF
On Bernstein Polynomials
IOSR Journals
 
PDF
International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
Btech_II_ engineering mathematics_unit4
Rai University
 
B.tech ii unit-3 material multiple integration
Rai University
 
3 capitulo-iii-matriz-asociada-sem-13-t-l-c
FernandoDanielMamani1
 
B.tech ii unit-5 material vector integration
Rai University
 
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
Rai University
 
Btech_II_ engineering mathematics_unit2
Rai University
 
B.Tech-II_Unit-II
Kundan Kumar
 
B.Tech-II_Unit-IV
Kundan Kumar
 
B.Tech-II_Unit-V
Kundan Kumar
 
Numerical solution of system of linear equations
reach2arkaELECTRICAL
 
Fismat chapter 4
MAY NURHAYATI
 
3 capitulo-iii-matriz-asociada-sem-15-t-l-e
FernandoDanielMamani1
 
GAUSS ELIMINATION METHOD
reach2arkaELECTRICAL
 
B.tech ii unit-2 material beta gamma function
Rai University
 
Gamma beta functions-1
Selvaraj John
 
B.Tech-II_Unit-III
Kundan Kumar
 
Bc4301300308
IJERA Editor
 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau
 
On Bernstein Polynomials
IOSR Journals
 
International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 

Similar to Z transforms (20)

PDF
maths ZT.pdf
Bharath904863
 
PDF
Proof of Beal's conjecture
nikos mantzakouras
 
PPTX
Laurents & Taylors series of complex numbers.pptx
jyotidighole2
 
PDF
Hw1sol
uxxdqq
 
PDF
Daa chapter7
B.Kirron Reddi
 
PDF
signalsandsystemsztransformEEEmaterial.pdf
Nityasrisumathi
 
PDF
PutzerPaper
Tyler Otto
 
PDF
ztransforms_Upload a presentation_Upload a presentation to downloadto downloa...
srnwsdb
 
PDF
Imc2016 day2-solutions
Christos Loizos
 
PDF
Maths digital text
VISHNUNIVASPRIYA
 
PDF
On cubic diophantine equation x2+y2 xy=39 z3
eSAT Journals
 
DOC
Chapter 5 (maths 3)
Prathab Harinathan
 
PDF
ALGEBRAIC SOLUTION OF FERMAT'S THEOREM (MATHEMATICS, NUMBER THEORY)
BRNSS Publication Hub
 
DOCX
Lattice points on the homogeneous cone 5(x2+y2) 9xy=23z2
eSAT Journals
 
DOCX
Lattice points on the homogeneous cone 5(x2+y2) 9xy=23z2
eSAT Journals
 
PDF
21 3 ztransform
Mahyar Alzobaidy
 
PDF
C222529
irjes
 
PDF
Answers to Problems for Adaptive Filters (2nd Edition) - Behrouz Farhang-Boro...
nazrinajeeb3
 
PDF
Chapter 2 sequencess and series
SMK Tengku Intan Zaharah
 
maths ZT.pdf
Bharath904863
 
Proof of Beal's conjecture
nikos mantzakouras
 
Laurents & Taylors series of complex numbers.pptx
jyotidighole2
 
Hw1sol
uxxdqq
 
Daa chapter7
B.Kirron Reddi
 
signalsandsystemsztransformEEEmaterial.pdf
Nityasrisumathi
 
PutzerPaper
Tyler Otto
 
ztransforms_Upload a presentation_Upload a presentation to downloadto downloa...
srnwsdb
 
Imc2016 day2-solutions
Christos Loizos
 
Maths digital text
VISHNUNIVASPRIYA
 
On cubic diophantine equation x2+y2 xy=39 z3
eSAT Journals
 
Chapter 5 (maths 3)
Prathab Harinathan
 
ALGEBRAIC SOLUTION OF FERMAT'S THEOREM (MATHEMATICS, NUMBER THEORY)
BRNSS Publication Hub
 
Lattice points on the homogeneous cone 5(x2+y2) 9xy=23z2
eSAT Journals
 
Lattice points on the homogeneous cone 5(x2+y2) 9xy=23z2
eSAT Journals
 
21 3 ztransform
Mahyar Alzobaidy
 
C222529
irjes
 
Answers to Problems for Adaptive Filters (2nd Edition) - Behrouz Farhang-Boro...
nazrinajeeb3
 
Chapter 2 sequencess and series
SMK Tengku Intan Zaharah
 
Ad

More from sujathavvv (14)

PPTX
Complex analysis
sujathavvv
 
PPTX
Formatted Console I/O Operations in C++
sujathavvv
 
PPTX
Programming in c++ ppt
sujathavvv
 
PPTX
Vector calculus
sujathavvv
 
PPTX
Programming in c++
sujathavvv
 
PPTX
Complex analysis
sujathavvv
 
PPTX
Trigonometry & vector calculus
sujathavvv
 
PPTX
Complex analysis
sujathavvv
 
PPTX
Differential equation and Laplace Transform
sujathavvv
 
PPTX
Differential equation and Laplace transform
sujathavvv
 
PPTX
Sequences and Series
sujathavvv
 
PPTX
Sequences and Series
sujathavvv
 
PPTX
Programming in C
sujathavvv
 
PPTX
Programming in c
sujathavvv
 
Complex analysis
sujathavvv
 
Formatted Console I/O Operations in C++
sujathavvv
 
Programming in c++ ppt
sujathavvv
 
Vector calculus
sujathavvv
 
Programming in c++
sujathavvv
 
Complex analysis
sujathavvv
 
Trigonometry & vector calculus
sujathavvv
 
Complex analysis
sujathavvv
 
Differential equation and Laplace Transform
sujathavvv
 
Differential equation and Laplace transform
sujathavvv
 
Sequences and Series
sujathavvv
 
Sequences and Series
sujathavvv
 
Programming in C
sujathavvv
 
Programming in c
sujathavvv
 
Ad

Recently uploaded (20)

PPTX
Artificial Intelligence in Gastroentrology: Advancements and Future Presprec...
AyanHossain
 
PPTX
CONCEPT OF CHILD CARE. pptx
AneetaSharma15
 
PPTX
Digital Professionalism and Interpersonal Competence
rutvikgediya1
 
PDF
BÀI TẬP TEST BỔ TRỢ THEO TỪNG CHỦ ĐỀ CỦA TỪNG UNIT KÈM BÀI TẬP NGHE - TIẾNG A...
Nguyen Thanh Tu Collection
 
PPTX
How to Track Skills & Contracts Using Odoo 18 Employee
Celine George
 
PPTX
Virus sequence retrieval from NCBI database
yamunaK13
 
PPTX
How to Close Subscription in Odoo 18 - Odoo Slides
Celine George
 
PPTX
Gupta Art & Architecture Temple and Sculptures.pptx
Virag Sontakke
 
PPTX
Dakar Framework Education For All- 2000(Act)
santoshmohalik1
 
PPTX
Top 10 AI Tools, Like ChatGPT. You Must Learn In 2025
Digilearnings
 
PPTX
Unlock the Power of Cursor AI: MuleSoft Integrations
Veera Pallapu
 
PPTX
I INCLUDED THIS TOPIC IS INTELLIGENCE DEFINITION, MEANING, INDIVIDUAL DIFFERE...
parmarjuli1412
 
PDF
EXCRETION-STRUCTURE OF NEPHRON,URINE FORMATION
raviralanaresh2
 
PPTX
YSPH VMOC Special Report - Measles Outbreak Southwest US 7-20-2025.pptx
Yale School of Public Health - The Virtual Medical Operations Center (VMOC)
 
PDF
Virat Kohli- the Pride of Indian cricket
kushpar147
 
PPTX
Translation_ Definition, Scope & Historical Development.pptx
DhatriParmar
 
PPTX
HEALTH CARE DELIVERY SYSTEM - UNIT 2 - GNM 3RD YEAR.pptx
Priyanshu Anand
 
PPTX
LDP-2 UNIT 4 Presentation for practical.pptx
abhaypanchal2525
 
PDF
TOP 10 AI TOOLS YOU MUST LEARN TO SURVIVE IN 2025 AND ABOVE
digilearnings.com
 
PPTX
Cleaning Validation Ppt Pharmaceutical validation
Ms. Ashatai Patil
 
Artificial Intelligence in Gastroentrology: Advancements and Future Presprec...
AyanHossain
 
CONCEPT OF CHILD CARE. pptx
AneetaSharma15
 
Digital Professionalism and Interpersonal Competence
rutvikgediya1
 
BÀI TẬP TEST BỔ TRỢ THEO TỪNG CHỦ ĐỀ CỦA TỪNG UNIT KÈM BÀI TẬP NGHE - TIẾNG A...
Nguyen Thanh Tu Collection
 
How to Track Skills & Contracts Using Odoo 18 Employee
Celine George
 
Virus sequence retrieval from NCBI database
yamunaK13
 
How to Close Subscription in Odoo 18 - Odoo Slides
Celine George
 
Gupta Art & Architecture Temple and Sculptures.pptx
Virag Sontakke
 
Dakar Framework Education For All- 2000(Act)
santoshmohalik1
 
Top 10 AI Tools, Like ChatGPT. You Must Learn In 2025
Digilearnings
 
Unlock the Power of Cursor AI: MuleSoft Integrations
Veera Pallapu
 
I INCLUDED THIS TOPIC IS INTELLIGENCE DEFINITION, MEANING, INDIVIDUAL DIFFERE...
parmarjuli1412
 
EXCRETION-STRUCTURE OF NEPHRON,URINE FORMATION
raviralanaresh2
 
YSPH VMOC Special Report - Measles Outbreak Southwest US 7-20-2025.pptx
Yale School of Public Health - The Virtual Medical Operations Center (VMOC)
 
Virat Kohli- the Pride of Indian cricket
kushpar147
 
Translation_ Definition, Scope & Historical Development.pptx
DhatriParmar
 
HEALTH CARE DELIVERY SYSTEM - UNIT 2 - GNM 3RD YEAR.pptx
Priyanshu Anand
 
LDP-2 UNIT 4 Presentation for practical.pptx
abhaypanchal2525
 
TOP 10 AI TOOLS YOU MUST LEARN TO SURVIVE IN 2025 AND ABOVE
digilearnings.com
 
Cleaning Validation Ppt Pharmaceutical validation
Ms. Ashatai Patil
 

Z transforms

  • 1. By A.Sujatha M.Sc.,Phil.,PGDCA., Department of Mathematics Transforms (18UMTS41) – Applications of Z-Transforms in linear difference equation
  • 2. Applications of difference equations Working Procedure: To solve a linear difference equation with constant coefficient by Z-transform. Step 1: Take the Z-transform on both sides of the difference equations using the formulae and the given conditions. Step 2: Transpose all terms without 𝑈(𝑧) to the right. Step 3: Divide by the coefficient of 𝑈(𝑧), getting 𝑈(𝑧) as a function of z. Step 4: Express this function in terms of the Z-transform of known functions and take the inverse Z-transform on both sides. This gives 𝑢 𝑛 as a function of n which is the desired solution. Example: Using the Z-transform, solve 𝑢 𝑛+2 − 2𝑢 𝑛+1 + 𝑢 𝑛 = 3𝑛 + 5 Solution: If 𝑍(𝑢 𝑛) = 𝑈(𝑧) then 𝑍(𝑢 𝑛+1) = 𝑧[𝑈(𝑧) − 𝑢0] 𝑍(𝑢 𝑛+2) = 𝑧2[𝑈(𝑧) − 𝑢0 − 𝑢1 𝑧−1] 𝑧 ( 𝑧−1)2 + 5 𝑧 𝑧−1 𝑍(3𝑛 + 5) = 3𝑍(𝑛) + 5𝑍(1) =3
  • 3. [ since 𝑍(𝑛) = 𝑧 ( 𝑧−1)2 , 𝑍(1) = 𝑧−1 𝑧 ] Given equation becomes 𝑢 𝑛+2 − 2𝑢 𝑛+1 + 𝑢 𝑛 = 3𝑛+ 5 → 𝟏 Applying Z-transform on both sides in equation 1 we get 𝑍(𝑢 𝑛+2) − 2𝑍(𝑢 𝑛+1) + 𝑍(𝑢 𝑛) = 𝑍(3𝑛 +5) 𝑧2[𝑈(𝑧) − 𝑢0 − 𝑢1 𝑧−1] − 2𝑧[𝑈(𝑧) − 𝑢0] + 𝑈(𝑧) = 3 𝑧 ( 𝑧−1)2 + 5 𝑧 𝑧−1 0𝑈(𝑧)[𝑧2 − 2𝑧 + 1] − 𝑢 [𝑧2 − 2𝑧]−𝑧2 𝑢1 𝑧 1 = 3𝑧+5𝑧( 𝑧−1) ( 𝑧−1)2 2 𝑈(𝑧)[𝑧 − 2𝑧 + 1] = 25𝑧 −2𝑧 ( 𝑧−1)2 2 0 1+ 𝑢 [𝑧 − 2𝑧] + 𝑢 𝑧 2 𝑈(𝑧)(𝑧 − 1) = 25𝑧 −2𝑧 ( 𝑧−1)2 2 0 1+ 𝑢 [𝑧 − 2𝑧] + 𝑢 𝑧 2 2 𝑈( 𝑧) = 5𝑧 −2𝑧 + 𝑢0[ 𝑧 −2𝑧] + 𝑢1 𝑧 ( 𝑧−1)4 ( 𝑧−1)2 ( 𝑧−1)2 On inversion we get 𝑢 𝑛 = 𝑍−1 [ 5𝑧2 −2𝑧 (𝑧 − 1)4 ] + 𝑢0 𝑍−1 [ 𝑧2 − 2𝑧 (𝑧 − 1)2 ] + 𝑢1 𝑍−1 [ 𝑧 (𝑧 − 1)2 ] ⟶ 𝟐
  • 4. Note that 𝑍(1) = 𝑧 𝑧 − 1 , 𝑍(𝑛) = 𝑧 (𝑧 − 1)2 , 𝑍(𝑛2) = 𝑧2 + 𝑧 (𝑧 − 1)3 , 𝑍(𝑛3) = 𝑧3 + 4𝑧2 + 𝑧 (𝑧 − 1)4 ⟶ 𝟑 Now consider 5𝑧2−2𝑧 𝑧3+4𝑧2+ 𝑧 ( 𝑧−1)4 = 𝐴 [ ( 𝑧−1)4 𝑧2+𝑧 𝑧 𝑧 𝑧−1 ] + 𝐵 [ ] + 𝐶 [ ] + 𝐷[ ] ( 𝑧−1)3 ( 𝑧−1)2 = 𝐴 [ ( 𝑧−1)4 ] + 𝐵[ 𝑧3+4𝑧2+𝑧 (𝑧2+𝑧)(𝑧−1) 𝑧( 𝑧−1)2 𝑧( 𝑧−1)3 ( 𝑧−1)4 ] + 𝐶 [ ( 𝑧−1)4 ] + 𝐷[ ( 𝑧−1)4] = 𝐴 [ 𝑧3+4𝑧2+𝑧 ( 𝑧−1)4 ] + 𝐵[ ( 𝑧−1)4 𝑧3−𝑧2+𝑧2−𝑧) 𝑧(𝑧2−2𝑧+1) ( 𝑧−1)4 ] + 𝐶 [ ] + 𝐷[ 𝑧(𝑧3−3𝑧2+3𝑧−1) ( 𝑧−1)4 ] 5𝑧2−2𝑧 𝑧3+4𝑧2+ 𝑧 ( 𝑧−1)4 = 𝐴 [ ( 𝑧−1)4 ] + 𝐵 [ 𝑧3−𝑧 ] + 𝐶 [ 𝑧3−2𝑧2+𝑍 ( 𝑧−1)4 ( 𝑧−1)4 ] + 𝐷[ 𝑧4−3𝑧3+3𝑧2−𝑧 ( 𝑧−1)4 ] Equating the like powers of z we get 𝐷 = 0 (coefficients of 𝑧4) 𝐴 + 𝐵 + 𝐶 − 3𝐷 = 0(coefficients of 𝑧3) ⇒ 𝐴 + 𝐵 + 𝐶 = 0 ⟶ 𝟒 4𝐴 + 0𝐵 − 2𝐶 + 3𝐷 = 5(coefficients of 𝑧2) ⇒ 4𝐴 − 2𝐶 = 5 ⟶ 𝟓 𝐴 − 𝐵 + 𝐶 − 𝐷 = −2(coefficients of𝑧)
  • 5. ⇒ 𝐴 − 𝐵 + 𝐶 = −2 ⟶ 𝟔 Solve equation 4 and 6 we get 𝐵 = 1 Put 𝐵 = 1 equation 4 we get 𝐴 + 𝐶 = −1 ⟶ 𝟕 Solve equation 3 and 2 ×equation 7 we get 𝐴 = 1 2 Put 𝐴 and 𝐵 value in equation 4 we get 𝐶 = − 3 2 2 1 3 2 ∴ 𝐴 = , 𝐵 = 1, 𝐶 = − , 𝐷 = 0 2 3 2 ∴ 5𝑧 −2𝑧 1 𝑧 +4𝑧 +𝑧 ( 𝑧−1)4 = 2 . [ ( 𝑧−1)4 𝑧2+𝑧 3 𝑧 𝑧 𝑧−1 ] + 1. [ ] − . [ ] + 0. [ ] ( 𝑧−1)3 2 ( 𝑧−1)2 ∴ 𝑍−1 5𝑧2−2𝑧 1 −1[ ] = 𝑍 [ ( 𝑧−1)4 2 ( 𝑧−1)4 ] + 𝑍−1𝑧3+4𝑧2+𝑧 𝑧2+𝑧 3 −1 𝑧 [ ] − 𝑍 [ ] ( 𝑧−1)3 2 ( 𝑧−1)2 1 3 2 3 2 2 = 𝑛 + 𝑛 − 𝑛 by equation3 1 2 2 = 𝑛(𝑛 + 2𝑛 − 3) 1 2 ( )= 𝑛 𝑛 − 1 (𝑛 + 3) 2 Consider 𝑧 −2𝑧 = 𝐴 + 𝐵 𝑧 𝑧 ( 𝑧−1)2 𝑧−1 ( 𝑧−1)2 = 𝐴 𝑧(𝑧−1) + 𝐵 𝑧(𝑧−1) 𝑧−1 ( 𝑧−1)2
  • 6. 2 2 ∴ 𝑧 −2𝑧 = 𝐴 𝑧 −2𝑧 + 𝐵 𝑧 ( 𝑧−1)2 𝑧−1 𝑧−1 Equating the like powers of z we get 𝐴 + 0 = 1(coefficients of 𝑧2) ∴ 𝐴 = 1 −𝐴 + 𝐵 = −2(coefficients of 𝑧) ⇒ 𝐵 = −1 2 2 ∴ 𝑧 −2𝑧 = 1. 𝑧 −2𝑧 − 1. 𝑧 ( 𝑧−1)2 𝑧−1 𝑧−1 2 ∴ 𝑍−1 [ 𝑧 −2𝑧 ] = 𝑍−1 [ 𝑧 ] − 𝑍−1[ ( 𝑧−1)2 𝑧−1 𝑧 ( 𝑧−1)2 ] = 1 − 𝑛 (by equation 3) and 𝑍−1 [ 𝑧 ( 𝑧−1)2 ] = 𝑛 ∴ equation 2 becomes 𝑛 1 2 ( )( ) ( )𝑢 = 𝑛 𝑛 − 1 𝑛 + 3 + 𝑢0 1 − 𝑛 + 𝑢1 𝑛 1 2 ( )( )= 𝑛 𝑛 − 1 𝑛 + 3 + 𝑢0 + (𝑢1 − 𝑢0)𝑛 2 = 1 𝑛(𝑛 − 1)(𝑛 + 3) + 𝑐 + 𝑐 𝑛 where 𝑐 = 𝑢 , 𝑐 = 𝑢 − 𝑢0 1 0 0 1 1 0