This document discusses challenges in large scale machine learning. It begins by discussing why distributed machine learning is necessary when data is too large for one computer to store or when models have too many parameters. It then discusses various challenges that arise in distributed machine learning including scalability issues, class imbalance, the curse of dimensionality, overfitting, and algorithm complexities related to data loading times. Specific examples are provided of distributing k-means clustering and spectral clustering algorithms. Distributed implementations of support vector machines are also discussed. Throughout, it emphasizes the importance of understanding when and where distributed approaches are suitable compared to single machine learning.