SlideShare a Scribd company logo
can data be smart? 
Accelerating Data driven Innovation 
with a Smart Data Innovation Lab (SDIL) 
Dr. Till Riedel, Prof. Dr.-Ing. Michael Beigl – Department of Informatics 
KIT – University of the State of Baden-Wuerttemberg and 
National Research Center of the Helmholtz Association www.kit.edu
Karlsruhe Institute of Technology 
A merger of the University of Karlsruhe (est. 1825) 
and the Karlsruhe Research Center 
3Nobel Laureates 
2 
Employees 
364 
9,261 23,836 
Professors 
Students 
789 Annual Budget in Million 
Euros
Computer Science at KIT 
Computer Science and applied CS 
250 2700 
3 
Scientific Staff 
41 
Students 
1972 1st CS department in 
Germany 
#1 Professors 
Computer Science Ratings, DFG Funds 
190 
> 900 PhDs 
Professors gained status 
from KIT‘s CS faculty
Why Big Data Matters: 
Dimension of Convergence 
Time 
Frequency 
Delay 
Location 
Perception 
# Phenomena 
Resolution 
Error 
4 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu 
Location Uncertainty vs. GPS Sampling Rate 
Paek, J., Kim, J., Govindan, R.: Energy-efficient rate-adaptive GPS-based positioning for 
smartphones. In: Proc. of the 8th Intl. Conf. on Mobile systems applications and services 
MobiSys 10, MobiSys ’10, p. 299ff. ACM, ACM Press (2010) 
Krijger, J. M., van Weele, M., Aben, I., and Frey, R.: Technical Note: 
The effect of sensor resolution on the number of cloud-free observations 
from space, Atmos. Chem. Phys., 7, 2881-2891 
Information 
Reality
Internet of Things and Services 
Meaningful 
Presentation 
Information 
/Services 
5 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu 
SRM CRM PLM 
/Things 
SCM ERP PLM EHM 
Leg-acy 
A2A 
People 
collaboration 
B2B 
roles embedded 
analytics 
alerts 
roles 
Smart 
Items 
Middleware 
Internet 
of 
Things 
Reality
Smart Economy: Data, the “new oil” 
What are the ramifications for Germany and 
Europe? Traditionally home of engineers. 
Engineering needs to be extended to also 
accommodate “Digital Data Engineering”. 
real-time processing of large data quantities 
(“Big Data”). 
Structuring Big Data results in information 
(“Smart Data”) 
leads to knowledge advantages 
can be used to support decision-making processes. 
6 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu
The Smart Data Innovation Lab 
(throwing oil onto the fire) 
Data Sources 
Industrial, 
Research, 
Government, 
Open Data 
Smart Data 
Innovation Lab 
7 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu 
Knowledge and Innovation 
(Analysis results, prognosis, 
Online-Analysis Systems) 
(Fast) Research 
and 
Development 
Systems, 
Analytics, 
Research 
based on 
open, 
proprietary 
SDIL internal 
Knowledge 
Generated Data 
Code Artefacts 
Selected 
Results 
„new oil“
Our Goals 
A Smart Data Centre and a Smart Data Community 
Prompt Co-Working on valuable Problems with valuable „Big 
Data“  Requires Structure (SDIL Orga) and Trust (SDIL Contract) 
Knowledge Transfer from Research to Industry and vice versa 
Exploration of 
Smart Data Potential / Innovation Potential 
Best Practice and Standards 
Research in 
Analytics, Systems, Application Domain specific 
Smart Data Tools, Support, Management, Privacy, Legal and Curation 
HCI and Usability 
First focus: short term high impact projects 
8 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu
Smart Data: From Data to Wisdom 
Information makes data meaningful for audiences 
because it requires the creation of relationships and 
patterns between data. 
Source: Nathan Shedroff, nathan.com 
9 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu 
Transforming data into 
information is accomplished by 
organizing it into a meaningful 
form, presenting it in 
meaningful and appropriate 
ways, and communicating the 
context around it.
Context Sensitive Systems w/ Predictive Analytics 
Planning, Control, Real Time Reaction 
Massive Ad-hoc 
Deployment of 
CPS-Systems, 
Recognition of 
Process related 
parameters 
Automatic 
Correlation to 
find novel 
insights 
10 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu 
Use of the data 
for planning, 
controlling 
processes
Meaningful Data in Context: 
Realtime Smart Data in Maintenance 
11 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu 
L1A10 
Temp 
L1B22 
Temp 
L1B20 
Temp 
L3A10 
Temp 
L1A10 
Temp 
teco.kit.edu
SDIL Project Phases 
Phase: Information 
• Industry and research partners search partners and their competence focus 
through the SDIL database 
Phase: Project Definition 
• Data Access / Result Model Selection, Funding & Contract Model 
• Research and Innovation Question and Results (Data, Algorithm, System) 
• Technical Details including Data and Service Interfaces 
Project Proposal Phase 
• Proposal handed into SDIL Community 
• In case of go: Preparing Operation 
Phase: Analysis 
• Prepare Data, Compute, Interpret Data and/or develop analytical method or 
system 
• Publish Results according to Data Model 
Continuation Phase 
• Prepare for follow up actions or development of a run time system 
• Care of Data Life Cycle according to contract 
12 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu
3 Data Access / Data Results Models (planned) 
Open Data 
Open to the public 
SDIL community open data 
Open to organisations who signed the contract and agreed to the terms 
and conditions of the contract 
Required for restricted access data (IP-Knowledge, data protection) 
SDIL P2P data 
Open to two or more partners in SDIL bound to a general NDA which 
includes handling rules for ethics and privacy 
Mixed data 
Fair share: Same amount of input (e.g. percentage of Open Data Input) 
and output (e.g. same amount of Open Data Output) 
Same approach for algorithms 
13 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu
Governance & Communities 
Strategy Board 
SDIL-Coordinator and Deputy (Michael Beigl, Laure Le Bars) 
Industry 4.0 
(Lead: Bosch, DFKI) 
Energy 
(Lead:EnBW, KIT) 
Smart Cities 
(Lead:Siemens, FhG) 
Medicine 
(Lead:Bayer, FZJ) 
14 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu 
Operational Board 
Innovation Communities 
Projects 
Repository 
Central 
Storage 
Remote 
Data Source 
Catalogue, Broker 
HANA 
Terra-cotta 
Azure ? 
9000 
… 
HAL 
Generic Tools, Data Curation 
Support 
Data Curation 
(Lead:DFKI, FhG) SDIL Platform
Further Activities and Services of SDIL (soon) 
Community Forums 
Workshops, Competition 
Consulting & Support 
Tools 
Education 
Contact us: 
http://www.sdil.de/en/contact/ 
Prof. Michael Beigl (michael.beigl@kit.edu) (SDIL Coordinator) 
15 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu
Bytecode 
16 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu 
Till Riedel, Big With Data, 
?
Ad

More Related Content

What's hot (19)

Product Keynote: Denodo 8.0 - A Logical Data Fabric for the Intelligent Enter...
Product Keynote: Denodo 8.0 - A Logical Data Fabric for the Intelligent Enter...Product Keynote: Denodo 8.0 - A Logical Data Fabric for the Intelligent Enter...
Product Keynote: Denodo 8.0 - A Logical Data Fabric for the Intelligent Enter...
Denodo
 
Logical Data Fabric: Architectural Components
Logical Data Fabric: Architectural ComponentsLogical Data Fabric: Architectural Components
Logical Data Fabric: Architectural Components
Denodo
 
[Infographic] Uniting Internet of Things and Big Data
[Infographic] Uniting Internet of Things and Big Data[Infographic] Uniting Internet of Things and Big Data
[Infographic] Uniting Internet of Things and Big Data
SnapLogic
 
Rocking the World of Big Data at Centrica
Rocking the World of Big Data at CentricaRocking the World of Big Data at Centrica
Rocking the World of Big Data at Centrica
DataWorks Summit/Hadoop Summit
 
The Virtualization of Clouds - The New Enterprise Data Architecture Opportunity
The Virtualization of Clouds - The New Enterprise Data Architecture OpportunityThe Virtualization of Clouds - The New Enterprise Data Architecture Opportunity
The Virtualization of Clouds - The New Enterprise Data Architecture Opportunity
Denodo
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An Introduction
Denodo
 
Denodo DataFest 2016: Data Science: Operationalizing Analytical Models in Rea...
Denodo DataFest 2016: Data Science: Operationalizing Analytical Models in Rea...Denodo DataFest 2016: Data Science: Operationalizing Analytical Models in Rea...
Denodo DataFest 2016: Data Science: Operationalizing Analytical Models in Rea...
Denodo
 
Kick Off – Graphs: The Fuel Behind Innovation and Transformation in Every Field
Kick Off – Graphs: The Fuel Behind Innovation and Transformation in Every FieldKick Off – Graphs: The Fuel Behind Innovation and Transformation in Every Field
Kick Off – Graphs: The Fuel Behind Innovation and Transformation in Every Field
Neo4j
 
Self Service Analytics enabled by Data Virtualization from Denodo
Self Service Analytics enabled by Data Virtualization from DenodoSelf Service Analytics enabled by Data Virtualization from Denodo
Self Service Analytics enabled by Data Virtualization from Denodo
Denodo
 
Creating a Healthcare Data Fabric, and Providing a Single, Unified, and Curat...
Creating a Healthcare Data Fabric, and Providing a Single, Unified, and Curat...Creating a Healthcare Data Fabric, and Providing a Single, Unified, and Curat...
Creating a Healthcare Data Fabric, and Providing a Single, Unified, and Curat...
Denodo
 
Denodo’s Data Catalog: Bridging the Gap between Data and Business
Denodo’s Data Catalog: Bridging the Gap between Data and BusinessDenodo’s Data Catalog: Bridging the Gap between Data and Business
Denodo’s Data Catalog: Bridging the Gap between Data and Business
Denodo
 
Neo4j im Fianzsektor: DIVIZEND
Neo4j im Fianzsektor: DIVIZENDNeo4j im Fianzsektor: DIVIZEND
Neo4j im Fianzsektor: DIVIZEND
Neo4j
 
Data Activities in Austria
Data Activities in AustriaData Activities in Austria
Data Activities in Austria
Semantic Web Company
 
Data Services and the Modern Data Ecosystem (Middle East)
Data Services and the Modern Data Ecosystem (Middle East)Data Services and the Modern Data Ecosystem (Middle East)
Data Services and the Modern Data Ecosystem (Middle East)
Denodo
 
Big Data Fabric: A Necessity For Any Successful Big Data Initiative
Big Data Fabric: A Necessity For Any Successful Big Data InitiativeBig Data Fabric: A Necessity For Any Successful Big Data Initiative
Big Data Fabric: A Necessity For Any Successful Big Data Initiative
Denodo
 
Prologis: How Data Virtualization Enables Data Scientists
Prologis: How Data Virtualization Enables Data ScientistsPrologis: How Data Virtualization Enables Data Scientists
Prologis: How Data Virtualization Enables Data Scientists
Denodo
 
IC-SDV 2018: Diane Webb (BizInt) Challenges in Visualizing Pharmaceutical Inf...
IC-SDV 2018: Diane Webb (BizInt) Challenges in Visualizing Pharmaceutical Inf...IC-SDV 2018: Diane Webb (BizInt) Challenges in Visualizing Pharmaceutical Inf...
IC-SDV 2018: Diane Webb (BizInt) Challenges in Visualizing Pharmaceutical Inf...
Dr. Haxel Consult
 
Applying Big Data
Applying Big DataApplying Big Data
Applying Big Data
John Dougherty
 
From Science to Data: Following a principled path to Data Science
From Science to Data: Following a principled path to Data ScienceFrom Science to Data: Following a principled path to Data Science
From Science to Data: Following a principled path to Data Science
Institute of Contemporary Sciences
 
Product Keynote: Denodo 8.0 - A Logical Data Fabric for the Intelligent Enter...
Product Keynote: Denodo 8.0 - A Logical Data Fabric for the Intelligent Enter...Product Keynote: Denodo 8.0 - A Logical Data Fabric for the Intelligent Enter...
Product Keynote: Denodo 8.0 - A Logical Data Fabric for the Intelligent Enter...
Denodo
 
Logical Data Fabric: Architectural Components
Logical Data Fabric: Architectural ComponentsLogical Data Fabric: Architectural Components
Logical Data Fabric: Architectural Components
Denodo
 
[Infographic] Uniting Internet of Things and Big Data
[Infographic] Uniting Internet of Things and Big Data[Infographic] Uniting Internet of Things and Big Data
[Infographic] Uniting Internet of Things and Big Data
SnapLogic
 
The Virtualization of Clouds - The New Enterprise Data Architecture Opportunity
The Virtualization of Clouds - The New Enterprise Data Architecture OpportunityThe Virtualization of Clouds - The New Enterprise Data Architecture Opportunity
The Virtualization of Clouds - The New Enterprise Data Architecture Opportunity
Denodo
 
Data Virtualization: An Introduction
Data Virtualization: An IntroductionData Virtualization: An Introduction
Data Virtualization: An Introduction
Denodo
 
Denodo DataFest 2016: Data Science: Operationalizing Analytical Models in Rea...
Denodo DataFest 2016: Data Science: Operationalizing Analytical Models in Rea...Denodo DataFest 2016: Data Science: Operationalizing Analytical Models in Rea...
Denodo DataFest 2016: Data Science: Operationalizing Analytical Models in Rea...
Denodo
 
Kick Off – Graphs: The Fuel Behind Innovation and Transformation in Every Field
Kick Off – Graphs: The Fuel Behind Innovation and Transformation in Every FieldKick Off – Graphs: The Fuel Behind Innovation and Transformation in Every Field
Kick Off – Graphs: The Fuel Behind Innovation and Transformation in Every Field
Neo4j
 
Self Service Analytics enabled by Data Virtualization from Denodo
Self Service Analytics enabled by Data Virtualization from DenodoSelf Service Analytics enabled by Data Virtualization from Denodo
Self Service Analytics enabled by Data Virtualization from Denodo
Denodo
 
Creating a Healthcare Data Fabric, and Providing a Single, Unified, and Curat...
Creating a Healthcare Data Fabric, and Providing a Single, Unified, and Curat...Creating a Healthcare Data Fabric, and Providing a Single, Unified, and Curat...
Creating a Healthcare Data Fabric, and Providing a Single, Unified, and Curat...
Denodo
 
Denodo’s Data Catalog: Bridging the Gap between Data and Business
Denodo’s Data Catalog: Bridging the Gap between Data and BusinessDenodo’s Data Catalog: Bridging the Gap between Data and Business
Denodo’s Data Catalog: Bridging the Gap between Data and Business
Denodo
 
Neo4j im Fianzsektor: DIVIZEND
Neo4j im Fianzsektor: DIVIZENDNeo4j im Fianzsektor: DIVIZEND
Neo4j im Fianzsektor: DIVIZEND
Neo4j
 
Data Services and the Modern Data Ecosystem (Middle East)
Data Services and the Modern Data Ecosystem (Middle East)Data Services and the Modern Data Ecosystem (Middle East)
Data Services and the Modern Data Ecosystem (Middle East)
Denodo
 
Big Data Fabric: A Necessity For Any Successful Big Data Initiative
Big Data Fabric: A Necessity For Any Successful Big Data InitiativeBig Data Fabric: A Necessity For Any Successful Big Data Initiative
Big Data Fabric: A Necessity For Any Successful Big Data Initiative
Denodo
 
Prologis: How Data Virtualization Enables Data Scientists
Prologis: How Data Virtualization Enables Data ScientistsPrologis: How Data Virtualization Enables Data Scientists
Prologis: How Data Virtualization Enables Data Scientists
Denodo
 
IC-SDV 2018: Diane Webb (BizInt) Challenges in Visualizing Pharmaceutical Inf...
IC-SDV 2018: Diane Webb (BizInt) Challenges in Visualizing Pharmaceutical Inf...IC-SDV 2018: Diane Webb (BizInt) Challenges in Visualizing Pharmaceutical Inf...
IC-SDV 2018: Diane Webb (BizInt) Challenges in Visualizing Pharmaceutical Inf...
Dr. Haxel Consult
 
From Science to Data: Following a principled path to Data Science
From Science to Data: Following a principled path to Data ScienceFrom Science to Data: Following a principled path to Data Science
From Science to Data: Following a principled path to Data Science
Institute of Contemporary Sciences
 

Viewers also liked (15)

Industrial IoT Mayhem? Java IoT Gateways to the Rescue
Industrial IoT Mayhem? Java IoT Gateways to the RescueIndustrial IoT Mayhem? Java IoT Gateways to the Rescue
Industrial IoT Mayhem? Java IoT Gateways to the Rescue
Eurotech
 
C01 – industry 4 – a revolution simon keogh – siemens
C01 – industry 4 – a revolution   simon keogh – siemensC01 – industry 4 – a revolution   simon keogh – siemens
C01 – industry 4 – a revolution simon keogh – siemens
PROFIBUS and PROFINET InternationaI - PI UK
 
IoT Toulouse : introduction à mqtt
IoT Toulouse : introduction à mqttIoT Toulouse : introduction à mqtt
IoT Toulouse : introduction à mqtt
Julien Vermillard
 
Hackathon "Jardin connecté" du Fablab Coh@bit de l'IUT de Bordeaux 6-7 avril ...
Hackathon "Jardin connecté" du Fablab Coh@bit de l'IUT de Bordeaux 6-7 avril ...Hackathon "Jardin connecté" du Fablab Coh@bit de l'IUT de Bordeaux 6-7 avril ...
Hackathon "Jardin connecté" du Fablab Coh@bit de l'IUT de Bordeaux 6-7 avril ...
polenumerique33
 
Cours #9 L'Internet des objets
Cours #9 L'Internet des objetsCours #9 L'Internet des objets
Cours #9 L'Internet des objets
Alexandre Moussier
 
Internet des Objets
Internet des ObjetsInternet des Objets
Internet des Objets
Dhiaeddine Loghmari
 
PLM-ERP Integration
PLM-ERP IntegrationPLM-ERP Integration
PLM-ERP Integration
Jagannathan Thiruvazhi (Jagan)
 
MongoDB IoT City Tour STUTTGART: Industrial Internet, Industry 4.0, Smart Fac...
MongoDB IoT City Tour STUTTGART: Industrial Internet, Industry 4.0, Smart Fac...MongoDB IoT City Tour STUTTGART: Industrial Internet, Industry 4.0, Smart Fac...
MongoDB IoT City Tour STUTTGART: Industrial Internet, Industry 4.0, Smart Fac...
MongoDB
 
Internet des objets (IoT)
Internet des objets (IoT)Internet des objets (IoT)
Internet des objets (IoT)
bruno-dambrun
 
Internet des objets
Internet des objetsInternet des objets
Internet des objets
Free Lance
 
L'internet des objets
L'internet des objetsL'internet des objets
L'internet des objets
Benjamin Labarthe-Piol
 
Introduction à l'IoT: du capteur à la donnée_Presentation Mix-IT2015
Introduction à l'IoT: du capteur à la donnée_Presentation Mix-IT2015Introduction à l'IoT: du capteur à la donnée_Presentation Mix-IT2015
Introduction à l'IoT: du capteur à la donnée_Presentation Mix-IT2015
Sameh BEN FREDJ
 
Internet des Objets
Internet des ObjetsInternet des Objets
Internet des Objets
IEEE 802
 
Conférence Internet des objets IoT M2M - CCI Bordeaux - 02 04 2015 - Introduc...
Conférence Internet des objets IoT M2M - CCI Bordeaux - 02 04 2015 - Introduc...Conférence Internet des objets IoT M2M - CCI Bordeaux - 02 04 2015 - Introduc...
Conférence Internet des objets IoT M2M - CCI Bordeaux - 02 04 2015 - Introduc...
polenumerique33
 
L'internet des objets (The Internet of Things)
L'internet des objets (The Internet of Things)L'internet des objets (The Internet of Things)
L'internet des objets (The Internet of Things)
Raphaël Duperret
 
Industrial IoT Mayhem? Java IoT Gateways to the Rescue
Industrial IoT Mayhem? Java IoT Gateways to the RescueIndustrial IoT Mayhem? Java IoT Gateways to the Rescue
Industrial IoT Mayhem? Java IoT Gateways to the Rescue
Eurotech
 
IoT Toulouse : introduction à mqtt
IoT Toulouse : introduction à mqttIoT Toulouse : introduction à mqtt
IoT Toulouse : introduction à mqtt
Julien Vermillard
 
Hackathon "Jardin connecté" du Fablab Coh@bit de l'IUT de Bordeaux 6-7 avril ...
Hackathon "Jardin connecté" du Fablab Coh@bit de l'IUT de Bordeaux 6-7 avril ...Hackathon "Jardin connecté" du Fablab Coh@bit de l'IUT de Bordeaux 6-7 avril ...
Hackathon "Jardin connecté" du Fablab Coh@bit de l'IUT de Bordeaux 6-7 avril ...
polenumerique33
 
Cours #9 L'Internet des objets
Cours #9 L'Internet des objetsCours #9 L'Internet des objets
Cours #9 L'Internet des objets
Alexandre Moussier
 
MongoDB IoT City Tour STUTTGART: Industrial Internet, Industry 4.0, Smart Fac...
MongoDB IoT City Tour STUTTGART: Industrial Internet, Industry 4.0, Smart Fac...MongoDB IoT City Tour STUTTGART: Industrial Internet, Industry 4.0, Smart Fac...
MongoDB IoT City Tour STUTTGART: Industrial Internet, Industry 4.0, Smart Fac...
MongoDB
 
Internet des objets (IoT)
Internet des objets (IoT)Internet des objets (IoT)
Internet des objets (IoT)
bruno-dambrun
 
Internet des objets
Internet des objetsInternet des objets
Internet des objets
Free Lance
 
Introduction à l'IoT: du capteur à la donnée_Presentation Mix-IT2015
Introduction à l'IoT: du capteur à la donnée_Presentation Mix-IT2015Introduction à l'IoT: du capteur à la donnée_Presentation Mix-IT2015
Introduction à l'IoT: du capteur à la donnée_Presentation Mix-IT2015
Sameh BEN FREDJ
 
Internet des Objets
Internet des ObjetsInternet des Objets
Internet des Objets
IEEE 802
 
Conférence Internet des objets IoT M2M - CCI Bordeaux - 02 04 2015 - Introduc...
Conférence Internet des objets IoT M2M - CCI Bordeaux - 02 04 2015 - Introduc...Conférence Internet des objets IoT M2M - CCI Bordeaux - 02 04 2015 - Introduc...
Conférence Internet des objets IoT M2M - CCI Bordeaux - 02 04 2015 - Introduc...
polenumerique33
 
L'internet des objets (The Internet of Things)
L'internet des objets (The Internet of Things)L'internet des objets (The Internet of Things)
L'internet des objets (The Internet of Things)
Raphaël Duperret
 
Ad

Similar to IoT 2014 Value Creation Workshop: SDIL (20)

From Big to Smart Data - Smart Data Innovation Lab Overview
From Big to Smart Data - Smart Data Innovation Lab OverviewFrom Big to Smart Data - Smart Data Innovation Lab Overview
From Big to Smart Data - Smart Data Innovation Lab Overview
Plamen Kiradjiev
 
Building Reference Architectures for the Industrial IoT
Building Reference Architectures for the Industrial IoTBuilding Reference Architectures for the Industrial IoT
Building Reference Architectures for the Industrial IoT
Capgemini
 
How Data Virtualization Puts Machine Learning into Production (APAC)
How Data Virtualization Puts Machine Learning into Production (APAC)How Data Virtualization Puts Machine Learning into Production (APAC)
How Data Virtualization Puts Machine Learning into Production (APAC)
Denodo
 
Advanced Analytics and Machine Learning with Data Virtualization (India)
Advanced Analytics and Machine Learning with Data Virtualization (India)Advanced Analytics and Machine Learning with Data Virtualization (India)
Advanced Analytics and Machine Learning with Data Virtualization (India)
Denodo
 
How Can AI and IoT Power the Chemical Industry?
How Can AI and IoT Power the Chemical Industry?How Can AI and IoT Power the Chemical Industry?
How Can AI and IoT Power the Chemical Industry?
Xiaonan Wang
 
Café da manhã - São Paulo - Use-cases and opportunities in BigData with Hadoop
Café da manhã - São Paulo - Use-cases and opportunities in BigData with HadoopCafé da manhã - São Paulo - Use-cases and opportunities in BigData with Hadoop
Café da manhã - São Paulo - Use-cases and opportunities in BigData with Hadoop
OCTO Technology
 
PROPEL . Austrian's Roadmap for Enterprise Linked Data
PROPEL . Austrian's Roadmap for Enterprise Linked DataPROPEL . Austrian's Roadmap for Enterprise Linked Data
PROPEL . Austrian's Roadmap for Enterprise Linked Data
Semantic Web Company
 
Towards a big data roadmap for europe
Towards a big data roadmap for europeTowards a big data roadmap for europe
Towards a big data roadmap for europe
BIG Project
 
Tag.bio: Self Service Data Mesh Platform
Tag.bio: Self Service Data Mesh PlatformTag.bio: Self Service Data Mesh Platform
Tag.bio: Self Service Data Mesh Platform
Sanjay Padhi, Ph.D
 
BUILDING BETTER PREDICTIVE MODELS WITH COGNITIVE ASSISTANCE IN A DATA SCIENCE...
BUILDING BETTER PREDICTIVE MODELS WITH COGNITIVE ASSISTANCE IN A DATA SCIENCE...BUILDING BETTER PREDICTIVE MODELS WITH COGNITIVE ASSISTANCE IN A DATA SCIENCE...
BUILDING BETTER PREDICTIVE MODELS WITH COGNITIVE ASSISTANCE IN A DATA SCIENCE...
Alex Liu
 
High Performance Computing and Big Data: The coming wave
High Performance Computing and Big Data: The coming waveHigh Performance Computing and Big Data: The coming wave
High Performance Computing and Big Data: The coming wave
Intel IT Center
 
Big data high performance computing commenting
Big data   high performance computing commentingBig data   high performance computing commenting
Big data high performance computing commenting
Intel IT Center
 
Proposal for the Theme on Big Data.pdf
Proposal for the Theme on Big Data.pdfProposal for the Theme on Big Data.pdf
Proposal for the Theme on Big Data.pdf
shayamiticharles
 
Data science hypes and reality
Data science hypes and realityData science hypes and reality
Data science hypes and reality
Helge Johannessen Bjorland
 
SDIC'16 - Betrieb des Smart Data Innovation Labs - Vorstellung der Plattform
SDIC'16 - Betrieb des Smart Data Innovation Labs - Vorstellung der PlattformSDIC'16 - Betrieb des Smart Data Innovation Labs - Vorstellung der Plattform
SDIC'16 - Betrieb des Smart Data Innovation Labs - Vorstellung der Plattform
Smart Data Innovation Lab
 
Big Data - A Real Life Revolution
Big Data - A Real Life RevolutionBig Data - A Real Life Revolution
Big Data - A Real Life Revolution
Capgemini
 
Meg Mude, Intel - Data Engineering Lifecycle Optimized on Intel - H2O World S...
Meg Mude, Intel - Data Engineering Lifecycle Optimized on Intel - H2O World S...Meg Mude, Intel - Data Engineering Lifecycle Optimized on Intel - H2O World S...
Meg Mude, Intel - Data Engineering Lifecycle Optimized on Intel - H2O World S...
Sri Ambati
 
2 pc enterprise summit cronin newfinal aug 18
2 pc enterprise summit cronin newfinal aug 182 pc enterprise summit cronin newfinal aug 18
2 pc enterprise summit cronin newfinal aug 18
IntelAPAC
 
The Analytics and Data Science Landscape
The Analytics and Data Science LandscapeThe Analytics and Data Science Landscape
The Analytics and Data Science Landscape
Philip Bourne
 
Platform for Big Data Analytics and Visual Analytics: CSIRO use cases. Februa...
Platform for Big Data Analytics and Visual Analytics: CSIRO use cases. Februa...Platform for Big Data Analytics and Visual Analytics: CSIRO use cases. Februa...
Platform for Big Data Analytics and Visual Analytics: CSIRO use cases. Februa...
Tomasz Bednarz
 
From Big to Smart Data - Smart Data Innovation Lab Overview
From Big to Smart Data - Smart Data Innovation Lab OverviewFrom Big to Smart Data - Smart Data Innovation Lab Overview
From Big to Smart Data - Smart Data Innovation Lab Overview
Plamen Kiradjiev
 
Building Reference Architectures for the Industrial IoT
Building Reference Architectures for the Industrial IoTBuilding Reference Architectures for the Industrial IoT
Building Reference Architectures for the Industrial IoT
Capgemini
 
How Data Virtualization Puts Machine Learning into Production (APAC)
How Data Virtualization Puts Machine Learning into Production (APAC)How Data Virtualization Puts Machine Learning into Production (APAC)
How Data Virtualization Puts Machine Learning into Production (APAC)
Denodo
 
Advanced Analytics and Machine Learning with Data Virtualization (India)
Advanced Analytics and Machine Learning with Data Virtualization (India)Advanced Analytics and Machine Learning with Data Virtualization (India)
Advanced Analytics and Machine Learning with Data Virtualization (India)
Denodo
 
How Can AI and IoT Power the Chemical Industry?
How Can AI and IoT Power the Chemical Industry?How Can AI and IoT Power the Chemical Industry?
How Can AI and IoT Power the Chemical Industry?
Xiaonan Wang
 
Café da manhã - São Paulo - Use-cases and opportunities in BigData with Hadoop
Café da manhã - São Paulo - Use-cases and opportunities in BigData with HadoopCafé da manhã - São Paulo - Use-cases and opportunities in BigData with Hadoop
Café da manhã - São Paulo - Use-cases and opportunities in BigData with Hadoop
OCTO Technology
 
PROPEL . Austrian's Roadmap for Enterprise Linked Data
PROPEL . Austrian's Roadmap for Enterprise Linked DataPROPEL . Austrian's Roadmap for Enterprise Linked Data
PROPEL . Austrian's Roadmap for Enterprise Linked Data
Semantic Web Company
 
Towards a big data roadmap for europe
Towards a big data roadmap for europeTowards a big data roadmap for europe
Towards a big data roadmap for europe
BIG Project
 
Tag.bio: Self Service Data Mesh Platform
Tag.bio: Self Service Data Mesh PlatformTag.bio: Self Service Data Mesh Platform
Tag.bio: Self Service Data Mesh Platform
Sanjay Padhi, Ph.D
 
BUILDING BETTER PREDICTIVE MODELS WITH COGNITIVE ASSISTANCE IN A DATA SCIENCE...
BUILDING BETTER PREDICTIVE MODELS WITH COGNITIVE ASSISTANCE IN A DATA SCIENCE...BUILDING BETTER PREDICTIVE MODELS WITH COGNITIVE ASSISTANCE IN A DATA SCIENCE...
BUILDING BETTER PREDICTIVE MODELS WITH COGNITIVE ASSISTANCE IN A DATA SCIENCE...
Alex Liu
 
High Performance Computing and Big Data: The coming wave
High Performance Computing and Big Data: The coming waveHigh Performance Computing and Big Data: The coming wave
High Performance Computing and Big Data: The coming wave
Intel IT Center
 
Big data high performance computing commenting
Big data   high performance computing commentingBig data   high performance computing commenting
Big data high performance computing commenting
Intel IT Center
 
Proposal for the Theme on Big Data.pdf
Proposal for the Theme on Big Data.pdfProposal for the Theme on Big Data.pdf
Proposal for the Theme on Big Data.pdf
shayamiticharles
 
SDIC'16 - Betrieb des Smart Data Innovation Labs - Vorstellung der Plattform
SDIC'16 - Betrieb des Smart Data Innovation Labs - Vorstellung der PlattformSDIC'16 - Betrieb des Smart Data Innovation Labs - Vorstellung der Plattform
SDIC'16 - Betrieb des Smart Data Innovation Labs - Vorstellung der Plattform
Smart Data Innovation Lab
 
Big Data - A Real Life Revolution
Big Data - A Real Life RevolutionBig Data - A Real Life Revolution
Big Data - A Real Life Revolution
Capgemini
 
Meg Mude, Intel - Data Engineering Lifecycle Optimized on Intel - H2O World S...
Meg Mude, Intel - Data Engineering Lifecycle Optimized on Intel - H2O World S...Meg Mude, Intel - Data Engineering Lifecycle Optimized on Intel - H2O World S...
Meg Mude, Intel - Data Engineering Lifecycle Optimized on Intel - H2O World S...
Sri Ambati
 
2 pc enterprise summit cronin newfinal aug 18
2 pc enterprise summit cronin newfinal aug 182 pc enterprise summit cronin newfinal aug 18
2 pc enterprise summit cronin newfinal aug 18
IntelAPAC
 
The Analytics and Data Science Landscape
The Analytics and Data Science LandscapeThe Analytics and Data Science Landscape
The Analytics and Data Science Landscape
Philip Bourne
 
Platform for Big Data Analytics and Visual Analytics: CSIRO use cases. Februa...
Platform for Big Data Analytics and Visual Analytics: CSIRO use cases. Februa...Platform for Big Data Analytics and Visual Analytics: CSIRO use cases. Februa...
Platform for Big Data Analytics and Visual Analytics: CSIRO use cases. Februa...
Tomasz Bednarz
 
Ad

More from Till Riedel (15)

From Load Forecasting to Demand Response - A Web of Things Use Case
From Load Forecasting to Demand Response  - A Web of Things Use CaseFrom Load Forecasting to Demand Response  - A Web of Things Use Case
From Load Forecasting to Demand Response - A Web of Things Use Case
Till Riedel
 
A device-free future of ubicomp?
A device-free future of ubicomp?A device-free future of ubicomp?
A device-free future of ubicomp?
Till Riedel
 
Thesis presentation: Middleware for Ubicomp - A Model Driven Development Appr...
Thesis presentation: Middleware for Ubicomp - A Model Driven Development Appr...Thesis presentation: Middleware for Ubicomp - A Model Driven Development Appr...
Thesis presentation: Middleware for Ubicomp - A Model Driven Development Appr...
Till Riedel
 
Relate: Architecture, Systems and Tools for Relative Positioning
Relate: Architecture, Systems and Tools for Relative PositioningRelate: Architecture, Systems and Tools for Relative Positioning
Relate: Architecture, Systems and Tools for Relative Positioning
Till Riedel
 
ParticleVM
ParticleVMParticleVM
ParticleVM
Till Riedel
 
Protocol Optimizations using anonymous EPC Gen2 Inventories
Protocol Optimizations using anonymous EPC Gen2 InventoriesProtocol Optimizations using anonymous EPC Gen2 Inventories
Protocol Optimizations using anonymous EPC Gen2 Inventories
Till Riedel
 
Pluggable Realworld Interfaces
Pluggable Realworld InterfacesPluggable Realworld Interfaces
Pluggable Realworld Interfaces
Till Riedel
 
A Community Platform for Auto-Annotated Recreational Maps
A Community Platform for Auto-Annotated Recreational MapsA Community Platform for Auto-Annotated Recreational Maps
A Community Platform for Auto-Annotated Recreational Maps
Till Riedel
 
Ubiquitous Resources Abstraction using a File System Interface on Sensor Nodes
Ubiquitous Resources Abstraction using a File System Interface on Sensor NodesUbiquitous Resources Abstraction using a File System Interface on Sensor Nodes
Ubiquitous Resources Abstraction using a File System Interface on Sensor Nodes
Till Riedel
 
Architecture for Collaborative Business Items
Architecture for Collaborative Business ItemsArchitecture for Collaborative Business Items
Architecture for Collaborative Business Items
Till Riedel
 
Implicit Middleware
Implicit MiddlewareImplicit Middleware
Implicit Middleware
Till Riedel
 
Syncob
SyncobSyncob
Syncob
Till Riedel
 
Barcodes, RFID or Smart Items? Evaluating track and trace technology today a...
Barcodes, RFID or Smart Items? Evaluating track and trace technology  today a...Barcodes, RFID or Smart Items? Evaluating track and trace technology  today a...
Barcodes, RFID or Smart Items? Evaluating track and trace technology today a...
Till Riedel
 
uBox A Distributed Resource Management Architecture for the Web-of-Things
uBox A Distributed Resource Management Architecture for the Web-of-ThingsuBox A Distributed Resource Management Architecture for the Web-of-Things
uBox A Distributed Resource Management Architecture for the Web-of-Things
Till Riedel
 
Using Web Service Gateways and Code Generation for Sustainable IoT System Dev...
Using Web Service Gateways and Code Generation for Sustainable IoT System Dev...Using Web Service Gateways and Code Generation for Sustainable IoT System Dev...
Using Web Service Gateways and Code Generation for Sustainable IoT System Dev...
Till Riedel
 
From Load Forecasting to Demand Response - A Web of Things Use Case
From Load Forecasting to Demand Response  - A Web of Things Use CaseFrom Load Forecasting to Demand Response  - A Web of Things Use Case
From Load Forecasting to Demand Response - A Web of Things Use Case
Till Riedel
 
A device-free future of ubicomp?
A device-free future of ubicomp?A device-free future of ubicomp?
A device-free future of ubicomp?
Till Riedel
 
Thesis presentation: Middleware for Ubicomp - A Model Driven Development Appr...
Thesis presentation: Middleware for Ubicomp - A Model Driven Development Appr...Thesis presentation: Middleware for Ubicomp - A Model Driven Development Appr...
Thesis presentation: Middleware for Ubicomp - A Model Driven Development Appr...
Till Riedel
 
Relate: Architecture, Systems and Tools for Relative Positioning
Relate: Architecture, Systems and Tools for Relative PositioningRelate: Architecture, Systems and Tools for Relative Positioning
Relate: Architecture, Systems and Tools for Relative Positioning
Till Riedel
 
Protocol Optimizations using anonymous EPC Gen2 Inventories
Protocol Optimizations using anonymous EPC Gen2 InventoriesProtocol Optimizations using anonymous EPC Gen2 Inventories
Protocol Optimizations using anonymous EPC Gen2 Inventories
Till Riedel
 
Pluggable Realworld Interfaces
Pluggable Realworld InterfacesPluggable Realworld Interfaces
Pluggable Realworld Interfaces
Till Riedel
 
A Community Platform for Auto-Annotated Recreational Maps
A Community Platform for Auto-Annotated Recreational MapsA Community Platform for Auto-Annotated Recreational Maps
A Community Platform for Auto-Annotated Recreational Maps
Till Riedel
 
Ubiquitous Resources Abstraction using a File System Interface on Sensor Nodes
Ubiquitous Resources Abstraction using a File System Interface on Sensor NodesUbiquitous Resources Abstraction using a File System Interface on Sensor Nodes
Ubiquitous Resources Abstraction using a File System Interface on Sensor Nodes
Till Riedel
 
Architecture for Collaborative Business Items
Architecture for Collaborative Business ItemsArchitecture for Collaborative Business Items
Architecture for Collaborative Business Items
Till Riedel
 
Implicit Middleware
Implicit MiddlewareImplicit Middleware
Implicit Middleware
Till Riedel
 
Barcodes, RFID or Smart Items? Evaluating track and trace technology today a...
Barcodes, RFID or Smart Items? Evaluating track and trace technology  today a...Barcodes, RFID or Smart Items? Evaluating track and trace technology  today a...
Barcodes, RFID or Smart Items? Evaluating track and trace technology today a...
Till Riedel
 
uBox A Distributed Resource Management Architecture for the Web-of-Things
uBox A Distributed Resource Management Architecture for the Web-of-ThingsuBox A Distributed Resource Management Architecture for the Web-of-Things
uBox A Distributed Resource Management Architecture for the Web-of-Things
Till Riedel
 
Using Web Service Gateways and Code Generation for Sustainable IoT System Dev...
Using Web Service Gateways and Code Generation for Sustainable IoT System Dev...Using Web Service Gateways and Code Generation for Sustainable IoT System Dev...
Using Web Service Gateways and Code Generation for Sustainable IoT System Dev...
Till Riedel
 

Recently uploaded (20)

Application of Microbiology- Industrial, agricultural, medical
Application of Microbiology- Industrial, agricultural, medicalApplication of Microbiology- Industrial, agricultural, medical
Application of Microbiology- Industrial, agricultural, medical
Anoja Kurian
 
Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...
Sérgio Sacani
 
Parallel resonance circuits of science.pdf
Parallel resonance circuits of science.pdfParallel resonance circuits of science.pdf
Parallel resonance circuits of science.pdf
rk5867336912
 
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdfBotany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
JseleBurgos
 
amino compounds.pptx class 12_Govinda Pathak
amino compounds.pptx class 12_Govinda Pathakamino compounds.pptx class 12_Govinda Pathak
amino compounds.pptx class 12_Govinda Pathak
GovindaPathak6
 
when is CT scan need in breast cancer patient.pptx
when is CT scan need in breast cancer patient.pptxwhen is CT scan need in breast cancer patient.pptx
when is CT scan need in breast cancer patient.pptx
Rukhnuddin Al-daudar
 
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Himarsha Jayanetti
 
Presentatation_SM_muscle_structpes_funtionre_ty.pptx
Presentatation_SM_muscle_structpes_funtionre_ty.pptxPresentatation_SM_muscle_structpes_funtionre_ty.pptx
Presentatation_SM_muscle_structpes_funtionre_ty.pptx
muralinath2
 
Causes of mortalities of eggs and spawn and remedies.pptx
Causes of mortalities of eggs and spawn and remedies.pptxCauses of mortalities of eggs and spawn and remedies.pptx
Causes of mortalities of eggs and spawn and remedies.pptx
anshumanmohanty9090
 
Effect of nutrition in Entomophagous Insectson
Effect of nutrition in Entomophagous InsectsonEffect of nutrition in Entomophagous Insectson
Effect of nutrition in Entomophagous Insectson
JabaskumarKshetri
 
Chapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.pptChapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.ppt
JessaBalanggoyPagula
 
Concise Notes on tree and graph data structure
Concise Notes on tree and graph data structureConcise Notes on tree and graph data structure
Concise Notes on tree and graph data structure
YekoyeTigabu2
 
Nutritional Diseases in poultry.........
Nutritional Diseases in poultry.........Nutritional Diseases in poultry.........
Nutritional Diseases in poultry.........
Bangladesh Agricultural University,Mymemsingh
 
Lecture 12 Types of farming system
Lecture 12       Types of farming systemLecture 12       Types of farming system
Lecture 12 Types of farming system
Nickala1
 
Influenza-Understanding-the-Deadly-Virus.pptx
Influenza-Understanding-the-Deadly-Virus.pptxInfluenza-Understanding-the-Deadly-Virus.pptx
Influenza-Understanding-the-Deadly-Virus.pptx
diyapadhiyar
 
Class-11-notes- Inorganic Chemistry Hydrogen, Oxygen,Ozone,Carbon,Phosphoros
Class-11-notes- Inorganic Chemistry Hydrogen, Oxygen,Ozone,Carbon,PhosphorosClass-11-notes- Inorganic Chemistry Hydrogen, Oxygen,Ozone,Carbon,Phosphoros
Class-11-notes- Inorganic Chemistry Hydrogen, Oxygen,Ozone,Carbon,Phosphoros
govindapathak8
 
Multydisciplinary Nature of Environmental Studies
Multydisciplinary Nature of Environmental StudiesMultydisciplinary Nature of Environmental Studies
Multydisciplinary Nature of Environmental Studies
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
SuperconductingMagneticEnergyStorage.pptx
SuperconductingMagneticEnergyStorage.pptxSuperconductingMagneticEnergyStorage.pptx
SuperconductingMagneticEnergyStorage.pptx
BurkanAlpKale
 
Zoonosis, Types, Causes. A comprehensive pptx
Zoonosis, Types, Causes. A comprehensive pptxZoonosis, Types, Causes. A comprehensive pptx
Zoonosis, Types, Causes. A comprehensive pptx
Dr Showkat Ahmad Wani
 
Skin_Glands_Structure_Secretion _Control
Skin_Glands_Structure_Secretion _ControlSkin_Glands_Structure_Secretion _Control
Skin_Glands_Structure_Secretion _Control
muralinath2
 
Application of Microbiology- Industrial, agricultural, medical
Application of Microbiology- Industrial, agricultural, medicalApplication of Microbiology- Industrial, agricultural, medical
Application of Microbiology- Industrial, agricultural, medical
Anoja Kurian
 
Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...Structure formation with primordial black holes: collisional dynamics, binari...
Structure formation with primordial black holes: collisional dynamics, binari...
Sérgio Sacani
 
Parallel resonance circuits of science.pdf
Parallel resonance circuits of science.pdfParallel resonance circuits of science.pdf
Parallel resonance circuits of science.pdf
rk5867336912
 
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdfBotany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
JseleBurgos
 
amino compounds.pptx class 12_Govinda Pathak
amino compounds.pptx class 12_Govinda Pathakamino compounds.pptx class 12_Govinda Pathak
amino compounds.pptx class 12_Govinda Pathak
GovindaPathak6
 
when is CT scan need in breast cancer patient.pptx
when is CT scan need in breast cancer patient.pptxwhen is CT scan need in breast cancer patient.pptx
when is CT scan need in breast cancer patient.pptx
Rukhnuddin Al-daudar
 
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...
Himarsha Jayanetti
 
Presentatation_SM_muscle_structpes_funtionre_ty.pptx
Presentatation_SM_muscle_structpes_funtionre_ty.pptxPresentatation_SM_muscle_structpes_funtionre_ty.pptx
Presentatation_SM_muscle_structpes_funtionre_ty.pptx
muralinath2
 
Causes of mortalities of eggs and spawn and remedies.pptx
Causes of mortalities of eggs and spawn and remedies.pptxCauses of mortalities of eggs and spawn and remedies.pptx
Causes of mortalities of eggs and spawn and remedies.pptx
anshumanmohanty9090
 
Effect of nutrition in Entomophagous Insectson
Effect of nutrition in Entomophagous InsectsonEffect of nutrition in Entomophagous Insectson
Effect of nutrition in Entomophagous Insectson
JabaskumarKshetri
 
Chapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.pptChapter 4_Part 2_Infection and Immunity.ppt
Chapter 4_Part 2_Infection and Immunity.ppt
JessaBalanggoyPagula
 
Concise Notes on tree and graph data structure
Concise Notes on tree and graph data structureConcise Notes on tree and graph data structure
Concise Notes on tree and graph data structure
YekoyeTigabu2
 
Lecture 12 Types of farming system
Lecture 12       Types of farming systemLecture 12       Types of farming system
Lecture 12 Types of farming system
Nickala1
 
Influenza-Understanding-the-Deadly-Virus.pptx
Influenza-Understanding-the-Deadly-Virus.pptxInfluenza-Understanding-the-Deadly-Virus.pptx
Influenza-Understanding-the-Deadly-Virus.pptx
diyapadhiyar
 
Class-11-notes- Inorganic Chemistry Hydrogen, Oxygen,Ozone,Carbon,Phosphoros
Class-11-notes- Inorganic Chemistry Hydrogen, Oxygen,Ozone,Carbon,PhosphorosClass-11-notes- Inorganic Chemistry Hydrogen, Oxygen,Ozone,Carbon,Phosphoros
Class-11-notes- Inorganic Chemistry Hydrogen, Oxygen,Ozone,Carbon,Phosphoros
govindapathak8
 
SuperconductingMagneticEnergyStorage.pptx
SuperconductingMagneticEnergyStorage.pptxSuperconductingMagneticEnergyStorage.pptx
SuperconductingMagneticEnergyStorage.pptx
BurkanAlpKale
 
Zoonosis, Types, Causes. A comprehensive pptx
Zoonosis, Types, Causes. A comprehensive pptxZoonosis, Types, Causes. A comprehensive pptx
Zoonosis, Types, Causes. A comprehensive pptx
Dr Showkat Ahmad Wani
 
Skin_Glands_Structure_Secretion _Control
Skin_Glands_Structure_Secretion _ControlSkin_Glands_Structure_Secretion _Control
Skin_Glands_Structure_Secretion _Control
muralinath2
 

IoT 2014 Value Creation Workshop: SDIL

  • 1. can data be smart? Accelerating Data driven Innovation with a Smart Data Innovation Lab (SDIL) Dr. Till Riedel, Prof. Dr.-Ing. Michael Beigl – Department of Informatics KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu
  • 2. Karlsruhe Institute of Technology A merger of the University of Karlsruhe (est. 1825) and the Karlsruhe Research Center 3Nobel Laureates 2 Employees 364 9,261 23,836 Professors Students 789 Annual Budget in Million Euros
  • 3. Computer Science at KIT Computer Science and applied CS 250 2700 3 Scientific Staff 41 Students 1972 1st CS department in Germany #1 Professors Computer Science Ratings, DFG Funds 190 > 900 PhDs Professors gained status from KIT‘s CS faculty
  • 4. Why Big Data Matters: Dimension of Convergence Time Frequency Delay Location Perception # Phenomena Resolution Error 4 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu Location Uncertainty vs. GPS Sampling Rate Paek, J., Kim, J., Govindan, R.: Energy-efficient rate-adaptive GPS-based positioning for smartphones. In: Proc. of the 8th Intl. Conf. on Mobile systems applications and services MobiSys 10, MobiSys ’10, p. 299ff. ACM, ACM Press (2010) Krijger, J. M., van Weele, M., Aben, I., and Frey, R.: Technical Note: The effect of sensor resolution on the number of cloud-free observations from space, Atmos. Chem. Phys., 7, 2881-2891 Information Reality
  • 5. Internet of Things and Services Meaningful Presentation Information /Services 5 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu SRM CRM PLM /Things SCM ERP PLM EHM Leg-acy A2A People collaboration B2B roles embedded analytics alerts roles Smart Items Middleware Internet of Things Reality
  • 6. Smart Economy: Data, the “new oil” What are the ramifications for Germany and Europe? Traditionally home of engineers. Engineering needs to be extended to also accommodate “Digital Data Engineering”. real-time processing of large data quantities (“Big Data”). Structuring Big Data results in information (“Smart Data”) leads to knowledge advantages can be used to support decision-making processes. 6 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu
  • 7. The Smart Data Innovation Lab (throwing oil onto the fire) Data Sources Industrial, Research, Government, Open Data Smart Data Innovation Lab 7 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu Knowledge and Innovation (Analysis results, prognosis, Online-Analysis Systems) (Fast) Research and Development Systems, Analytics, Research based on open, proprietary SDIL internal Knowledge Generated Data Code Artefacts Selected Results „new oil“
  • 8. Our Goals A Smart Data Centre and a Smart Data Community Prompt Co-Working on valuable Problems with valuable „Big Data“  Requires Structure (SDIL Orga) and Trust (SDIL Contract) Knowledge Transfer from Research to Industry and vice versa Exploration of Smart Data Potential / Innovation Potential Best Practice and Standards Research in Analytics, Systems, Application Domain specific Smart Data Tools, Support, Management, Privacy, Legal and Curation HCI and Usability First focus: short term high impact projects 8 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu
  • 9. Smart Data: From Data to Wisdom Information makes data meaningful for audiences because it requires the creation of relationships and patterns between data. Source: Nathan Shedroff, nathan.com 9 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu Transforming data into information is accomplished by organizing it into a meaningful form, presenting it in meaningful and appropriate ways, and communicating the context around it.
  • 10. Context Sensitive Systems w/ Predictive Analytics Planning, Control, Real Time Reaction Massive Ad-hoc Deployment of CPS-Systems, Recognition of Process related parameters Automatic Correlation to find novel insights 10 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu Use of the data for planning, controlling processes
  • 11. Meaningful Data in Context: Realtime Smart Data in Maintenance 11 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu L1A10 Temp L1B22 Temp L1B20 Temp L3A10 Temp L1A10 Temp teco.kit.edu
  • 12. SDIL Project Phases Phase: Information • Industry and research partners search partners and their competence focus through the SDIL database Phase: Project Definition • Data Access / Result Model Selection, Funding & Contract Model • Research and Innovation Question and Results (Data, Algorithm, System) • Technical Details including Data and Service Interfaces Project Proposal Phase • Proposal handed into SDIL Community • In case of go: Preparing Operation Phase: Analysis • Prepare Data, Compute, Interpret Data and/or develop analytical method or system • Publish Results according to Data Model Continuation Phase • Prepare for follow up actions or development of a run time system • Care of Data Life Cycle according to contract 12 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu
  • 13. 3 Data Access / Data Results Models (planned) Open Data Open to the public SDIL community open data Open to organisations who signed the contract and agreed to the terms and conditions of the contract Required for restricted access data (IP-Knowledge, data protection) SDIL P2P data Open to two or more partners in SDIL bound to a general NDA which includes handling rules for ethics and privacy Mixed data Fair share: Same amount of input (e.g. percentage of Open Data Input) and output (e.g. same amount of Open Data Output) Same approach for algorithms 13 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu
  • 14. Governance & Communities Strategy Board SDIL-Coordinator and Deputy (Michael Beigl, Laure Le Bars) Industry 4.0 (Lead: Bosch, DFKI) Energy (Lead:EnBW, KIT) Smart Cities (Lead:Siemens, FhG) Medicine (Lead:Bayer, FZJ) 14 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu Operational Board Innovation Communities Projects Repository Central Storage Remote Data Source Catalogue, Broker HANA Terra-cotta Azure ? 9000 … HAL Generic Tools, Data Curation Support Data Curation (Lead:DFKI, FhG) SDIL Platform
  • 15. Further Activities and Services of SDIL (soon) Community Forums Workshops, Competition Consulting & Support Tools Education Contact us: http://www.sdil.de/en/contact/ Prof. Michael Beigl ([email protected]) (SDIL Coordinator) 15 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu
  • 16. Bytecode 16 Smart Data Innovation Lab. Michael Beigl. teco.kit.edu Till Riedel, Big With Data, ?