This document summarizes and compares two popular Python libraries for graph neural networks - Spektral and PyTorch Geometric. It begins by providing an overview of the basic functionality and architecture of each library. It then discusses how each library handles data loading and mini-batching of graph data. The document reviews several common message passing layer types implemented in both libraries. It provides an example comparison of using each library for a node classification task on the Cora dataset. Finally, it discusses a graph classification comparison in PyTorch Geometric using different message passing and pooling layers on the IMDB-binary dataset.