This presentation on Recurrent Neural Network will help you understand what is a neural network, what are the popular neural networks, why we need recurrent neural network, what is a recurrent neural network, how does a RNN work, what is vanishing and exploding gradient problem, what is LSTM and you will also see a use case implementation of LSTM (Long short term memory). Neural networks used in Deep Learning consists of different layers connected to each other and work on the structure and functions of the human brain. It learns from huge volumes of data and used complex algorithms to train a neural net. The recurrent neural network works on the principle of saving the output of a layer and feeding this back to the input in order to predict the output of the layer. Now lets deep dive into this presentation and understand what is RNN and how does it actually work.
Below topics are explained in this recurrent neural networks tutorial:
1. What is a neural network?
2. Popular neural networks?
3. Why recurrent neural network?
4. What is a recurrent neural network?
5. How does an RNN work?
6. Vanishing and exploding gradient problem
7. Long short term memory (LSTM)
8. Use case implementation of LSTM
Simplilearn’s Deep Learning course will transform you into an expert in deep learning techniques using TensorFlow, the open-source software library designed to conduct machine learning & deep neural network research. With our deep learning course, you'll master deep learning and TensorFlow concepts, learn to implement algorithms, build artificial neural networks and traverse layers of data abstraction to understand the power of data and prepare you for your new role as deep learning scientist.
Why Deep Learning?
It is one of the most popular software platforms used for deep learning and contains powerful tools to help you build and implement artificial neural networks.
Advancements in deep learning are being seen in smartphone applications, creating efficiencies in the power grid, driving advancements in healthcare, improving agricultural yields, and helping us find solutions to climate change. With this Tensorflow course, you’ll build expertise in deep learning models, learn to operate TensorFlow to manage neural networks and interpret the results.
And according to payscale.com, the median salary for engineers with deep learning skills tops $120,000 per year.
You can gain in-depth knowledge of Deep Learning by taking our Deep Learning certification training course. With Simplilearn’s Deep Learning course, you will prepare for a career as a Deep Learning engineer as you master concepts and techniques including supervised and unsupervised learning, mathematical and heuristic aspects, and hands-on modeling to develop algorithms. Those who complete the course will be able to:
Learn more at: https://www.simplilearn.com/
Introduction to Recurrent Neural NetworkKnoldus Inc.
The document provides an introduction to recurrent neural networks (RNNs). It discusses how RNNs differ from feedforward neural networks in that they have internal memory and can use their output from the previous time step as input. This allows RNNs to process sequential data like time series. The document outlines some common RNN types and explains the vanishing gradient problem that can occur in RNNs due to multiplication of small gradient values over many time steps. It discusses solutions to this problem like LSTMs and techniques like weight initialization and gradient clipping.
Bayes' Theorem relates prior probabilities, conditional probabilities, and posterior probabilities. It provides a mathematical rule for updating estimates based on new evidence or observations. The theorem states that the posterior probability of an event is equal to the conditional probability of the event given the evidence multiplied by the prior probability, divided by the probability of the evidence. Bayes' Theorem can be used to calculate conditional probabilities, like the probability of a woman having breast cancer given a positive mammogram result, or the probability that a part came from a specific supplier given that it is non-defective. It is widely applicable in science, medicine, and other fields for revising hypotheses based on new data.
The document describes multilayer neural networks and their use for classification problems. It discusses how neural networks can handle continuous-valued inputs and outputs unlike decision trees. Neural networks are inherently parallel and can be sped up through parallelization techniques. The document then provides details on the basic components of neural networks, including neurons, weights, biases, and activation functions. It also describes common network architectures like feedforward networks and discusses backpropagation for training networks.
Recurrent neural networks (RNNs) are a type of artificial neural network that can process sequential data of varying lengths. Unlike traditional neural networks, RNNs maintain an internal state that allows them to exhibit dynamic temporal behavior. RNNs take the output from the previous step and feed it as input to the current step, making the network dependent on information from earlier steps. This makes RNNs well-suited for applications like text generation, machine translation, image captioning, and more. RNNs can remember information for long periods of time but are difficult to train due to issues like vanishing gradients.
Convolutional Neural Network - CNN | How CNN Works | Deep Learning Course | S...Simplilearn
A Convolutional Neural Network (CNN) is a type of neural network that can process grid-like data like images. It works by applying filters to the input image to extract features at different levels of abstraction. The CNN takes the pixel values of an input image as the input layer. Hidden layers like the convolution layer, ReLU layer and pooling layer are applied to extract features from the image. The fully connected layer at the end identifies the object in the image based on the extracted features. CNNs use the convolution operation with small filter matrices that are convolved across the width and height of the input volume to compute feature maps.
The document provides an overview of LSTM (Long Short-Term Memory) networks. It first reviews RNNs (Recurrent Neural Networks) and their limitations in capturing long-term dependencies. It then introduces LSTM networks, which address this issue using forget, input, and output gates that allow the network to retain information for longer. Code examples are provided to demonstrate how LSTM remembers information over many time steps. Resources for further reading on LSTMs and RNNs are listed at the end.
Sequence to Sequence Learning with Neural NetworksNguyen Quang
This document discusses sequence to sequence learning with neural networks. It summarizes a seminal paper that introduced a simple approach using LSTM neural networks to map sequences to sequences. The approach uses two LSTMs - an encoder LSTM to map the input sequence to a fixed-dimensional vector, and a decoder LSTM to map the vector back to the target sequence. The paper achieved state-of-the-art results on English to French machine translation, showing the potential of simple neural models for sequence learning tasks.
A comprehensive tutorial on Convolutional Neural Networks (CNN) which talks about the motivation behind CNNs and Deep Learning in general, followed by a description of the various components involved in a typical CNN layer. It explains the theory involved with the different variants used in practice and also, gives a big picture of the whole network by putting everything together.
Next, there's a discussion of the various state-of-the-art frameworks being used to implement CNNs to tackle real-world classification and regression problems.
Finally, the implementation of the CNNs is demonstrated by implementing the paper 'Age ang Gender Classification Using Convolutional Neural Networks' by Hassner (2015).
The document discusses recurrent neural networks (RNNs) and long short-term memory (LSTM) networks. It provides details on the architecture of RNNs including forward and back propagation. LSTMs are described as a type of RNN that can learn long-term dependencies using forget, input and output gates to control the cell state. Examples of applications for RNNs and LSTMs include language modeling, machine translation, speech recognition, and generating image descriptions.
Recurrent Neural Networks have shown to be very powerful models as they can propagate context over several time steps. Due to this they can be applied effectively for addressing several problems in Natural Language Processing, such as Language Modelling, Tagging problems, Speech Recognition etc. In this presentation we introduce the basic RNN model and discuss the vanishing gradient problem. We describe LSTM (Long Short Term Memory) and Gated Recurrent Units (GRU). We also discuss Bidirectional RNN with an example. RNN architectures can be considered as deep learning systems where the number of time steps can be considered as the depth of the network. It is also possible to build the RNN with multiple hidden layers, each having recurrent connections from the previous time steps that represent the abstraction both in time and space.
The document provides an overview of convolutional neural networks (CNNs) and their layers. It begins with an introduction to CNNs, noting they are a type of neural network designed to process 2D inputs like images. It then discusses the typical CNN architecture of convolutional layers followed by pooling and fully connected layers. The document explains how CNNs work using a simple example of classifying handwritten X and O characters. It provides details on the different layer types, including convolutional layers which identify patterns using small filters, and pooling layers which downsample the inputs.
Artificial Intelligence, Machine Learning, Deep Learning
The 5 myths of AI
Deep Learning in action
Basics of Deep Learning
NVIDIA Volta V100 and AWS P3
Deep generative models can generate synthetic images, speech, text and other data types. There are three popular types: autoregressive models which generate data step-by-step; variational autoencoders which learn the distribution of latent variables to generate data; and generative adversarial networks which train a generator and discriminator in an adversarial game to generate high quality samples. Generative models have applications in image generation, translation between domains, and simulation.
Much of data is sequential – think speech, text, DNA, stock prices, financial transactions and customer action histories. Modern methods for modelling sequence data are often deep learning-based, composed of either recurrent neural networks (RNNs) or attention-based Transformers. A tremendous amount of research progress has recently been made in sequence modelling, particularly in the application to NLP problems. However, the inner workings of these sequence models can be difficult to dissect and intuitively understand.
This presentation/tutorial will start from the basics and gradually build upon concepts in order to impart an understanding of the inner mechanics of sequence models – why do we need specific architectures for sequences at all, when you could use standard feed-forward networks? How do RNNs actually handle sequential information, and why do LSTM units help longer-term remembering of information? How can Transformers do such a good job at modelling sequences without any recurrence or convolutions?
In the practical portion of this tutorial, attendees will learn how to build their own LSTM-based language model in Keras. A few other use cases of deep learning-based sequence modelling will be discussed – including sentiment analysis (prediction of the emotional valence of a piece of text) and machine translation (automatic translation between different languages).
The goals of this presentation are to provide an overview of popular sequence-based problems, impart an intuition for how the most commonly-used sequence models work under the hood, and show that quite similar architectures are used to solve sequence-based problems across many domains.
It’s long ago, approx. 30 years, since AI was not only a topic for Science-Fiction writers, but also a major research field surrounded with huge hopes and investments. But the over-inflated expectations ended in a subsequent crash and followed by a period of absent funding and interest – the so-called AI winter. However, the last 3 years changed everything – again. Deep learning, a machine learning technique inspired by the human brain, successfully crushed one benchmark after another and tech companies, like Google, Facebook and Microsoft, started to invest billions in AI research. “The pace of progress in artificial general intelligence is incredible fast” (Elon Musk – CEO Tesla & SpaceX) leading to an AI that “would be either the best or the worst thing ever to happen to humanity” (Stephen Hawking – Physicist).
What sparked this new Hype? How is Deep Learning different from previous approaches? Are the advancing AI technologies really a threat for humanity? Let’s look behind the curtain and unravel the reality. This talk will explore why Sundar Pichai (CEO Google) recently announced that “machine learning is a core transformative way by which Google is rethinking everything they are doing” and explain why "Deep Learning is probably one of the most exciting things that is happening in the computer industry” (Jen-Hsun Huang – CEO NVIDIA).
Either a new AI “winter is coming” (Ned Stark – House Stark) or this new wave of innovation might turn out as the “last invention humans ever need to make” (Nick Bostrom – AI Philosoph). Or maybe it’s just another great technology helping humans to achieve more.
RNN AND LSTM
This document provides an overview of RNNs and LSTMs:
1. RNNs can process sequential data like time series data using internal hidden states.
2. LSTMs are a type of RNN that use memory cells to store information for long periods of time.
3. LSTMs have input, forget, and output gates that control information flow into and out of the memory cell.
Basics of RNNs and its applications with following papers:
- Generating Sequences With Recurrent Neural Networks, 2013
- Show and Tell: A Neural Image Caption Generator, 2014
- Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, 2015
- DenseCap: Fully Convolutional Localization Networks for Dense Captioning, 2015
- Deep Tracking- Seeing Beyond Seeing Using Recurrent Neural Networks, 2016
- Robust Modeling and Prediction in Dynamic Environments Using Recurrent Flow Networks, 2016
- Social LSTM- Human Trajectory Prediction in Crowded Spaces, 2016
- DESIRE- Distant Future Prediction in Dynamic Scenes with Interacting Agents, 2017
- Predictive State Recurrent Neural Networks, 2017
Recurrent neural networks (RNNs) and long short-term memory (LSTM) networks can be used for sequence modeling tasks like predicting the next word. RNNs apply the same function to each element of a sequence but struggle with long-term dependencies. LSTMs address this with a gated cell that can maintain information over many time steps by optionally adding, removing, or updating cell state. LSTMs are better for tasks like language modeling since they can remember inputs from much earlier in the sequence. RNNs and LSTMs have applications in areas like music generation, machine translation, and predictive modeling.
This Edureka Recurrent Neural Networks tutorial will help you in understanding why we need Recurrent Neural Networks (RNN) and what exactly it is. It also explains few issues with training a Recurrent Neural Network and how to overcome those challenges using LSTMs. The last section includes a use-case of LSTM to predict the next word using a sample short story
Below are the topics covered in this tutorial:
1. Why Not Feedforward Networks?
2. What Are Recurrent Neural Networks?
3. Training A Recurrent Neural Network
4. Issues With Recurrent Neural Networks - Vanishing And Exploding Gradient
5. Long Short-Term Memory Networks (LSTMs)
6. LSTM Use-Case
Introduction to Generative Adversarial Networks (GANs) by Michał Maj
Full story: https://appsilon.com/satellite-imagery-generation-with-gans/
Recurrent Neural Network
ACRRL
Applied Control & Robotics Research Laboratory of Shiraz University
Department of Power and Control Engineering, Shiraz University, Fars, Iran.
Mohammad Sabouri
https://sites.google.com/view/acrrl/
Deep Learning: Recurrent Neural Network (Chapter 10) Larry Guo
This Material is an in_depth study report of Recurrent Neural Network (RNN)
Material mainly from Deep Learning Book Bible, http://www.deeplearningbook.org/
Topics: Briefing, Theory Proof, Variation, Gated RNNN Intuition. Real World Application
Application (CNN+RNN on SVHN)
Also a video (In Chinese)
https://www.youtube.com/watch?v=p6xzPqRd46w
A fast-paced introduction to Deep Learning concepts, such as activation functions, cost functions, back propagation, and then a quick dive into CNNs. Basic knowledge of vectors, matrices, and derivatives is helpful in order to derive the maximum benefit from this session.
The document provides an overview of Long Short Term Memory (LSTM) networks. It discusses:
1) The vanishing gradient problem in traditional RNNs and how LSTMs address it through gated cells that allow information to persist without decay.
2) The key components of LSTMs - forget gates, input gates, output gates and cell states - and how they control the flow of information.
3) Common variations of LSTMs including peephole connections, coupled forget/input gates, and Gated Recurrent Units (GRUs). Applications of LSTMs in areas like speech recognition, machine translation and more are also mentioned.
Part 2 of the Deep Learning Fundamentals Series, this session discusses Tuning Training (including hyperparameters, overfitting/underfitting), Training Algorithms (including different learning rates, backpropagation), Optimization (including stochastic gradient descent, momentum, Nesterov Accelerated Gradient, RMSprop, Adaptive algorithms - Adam, Adadelta, etc.), and a primer on Convolutional Neural Networks. The demos included in these slides are running on Keras with TensorFlow backend on Databricks.
The document discusses Long Short Term Memory (LSTM) networks, which are a type of recurrent neural network capable of learning long-term dependencies. It explains that unlike standard RNNs, LSTMs use forget, input, and output gates to control the flow of information into and out of the cell state, allowing them to better capture long-range temporal dependencies in sequential data like text, audio, and time-series data. The document provides details on how LSTM gates work and how LSTMs can be used for applications involving sequential data like machine translation and question answering.
This document provides an introduction to deep learning. It begins with an overview of artificial intelligence techniques like computer vision, speech processing, and natural language processing that benefit from deep learning. It then reviews the history of deep learning algorithms from perceptrons to modern deep neural networks. The core concepts of deep learning processes, neural network architectures, and training techniques like backpropagation are explained. Popular deep learning frameworks like TensorFlow, Keras, and PyTorch are also introduced. Finally, examples of convolutional neural networks, recurrent neural networks, and generative adversarial networks are briefly described along with tips for training deep neural networks and resources for further learning.
This document provides an introduction to neural networks. It discusses how neural networks have recently achieved state-of-the-art results in areas like image and speech recognition and how they were able to beat a human player at the game of Go. It then provides a brief history of neural networks, from the early perceptron model to today's deep learning approaches. It notes how neural networks can automatically learn features from data rather than requiring handcrafted features. The document concludes with an overview of commonly used neural network components and libraries for building neural networks today.
A comprehensive tutorial on Convolutional Neural Networks (CNN) which talks about the motivation behind CNNs and Deep Learning in general, followed by a description of the various components involved in a typical CNN layer. It explains the theory involved with the different variants used in practice and also, gives a big picture of the whole network by putting everything together.
Next, there's a discussion of the various state-of-the-art frameworks being used to implement CNNs to tackle real-world classification and regression problems.
Finally, the implementation of the CNNs is demonstrated by implementing the paper 'Age ang Gender Classification Using Convolutional Neural Networks' by Hassner (2015).
The document discusses recurrent neural networks (RNNs) and long short-term memory (LSTM) networks. It provides details on the architecture of RNNs including forward and back propagation. LSTMs are described as a type of RNN that can learn long-term dependencies using forget, input and output gates to control the cell state. Examples of applications for RNNs and LSTMs include language modeling, machine translation, speech recognition, and generating image descriptions.
Recurrent Neural Networks have shown to be very powerful models as they can propagate context over several time steps. Due to this they can be applied effectively for addressing several problems in Natural Language Processing, such as Language Modelling, Tagging problems, Speech Recognition etc. In this presentation we introduce the basic RNN model and discuss the vanishing gradient problem. We describe LSTM (Long Short Term Memory) and Gated Recurrent Units (GRU). We also discuss Bidirectional RNN with an example. RNN architectures can be considered as deep learning systems where the number of time steps can be considered as the depth of the network. It is also possible to build the RNN with multiple hidden layers, each having recurrent connections from the previous time steps that represent the abstraction both in time and space.
The document provides an overview of convolutional neural networks (CNNs) and their layers. It begins with an introduction to CNNs, noting they are a type of neural network designed to process 2D inputs like images. It then discusses the typical CNN architecture of convolutional layers followed by pooling and fully connected layers. The document explains how CNNs work using a simple example of classifying handwritten X and O characters. It provides details on the different layer types, including convolutional layers which identify patterns using small filters, and pooling layers which downsample the inputs.
Artificial Intelligence, Machine Learning, Deep Learning
The 5 myths of AI
Deep Learning in action
Basics of Deep Learning
NVIDIA Volta V100 and AWS P3
Deep generative models can generate synthetic images, speech, text and other data types. There are three popular types: autoregressive models which generate data step-by-step; variational autoencoders which learn the distribution of latent variables to generate data; and generative adversarial networks which train a generator and discriminator in an adversarial game to generate high quality samples. Generative models have applications in image generation, translation between domains, and simulation.
Much of data is sequential – think speech, text, DNA, stock prices, financial transactions and customer action histories. Modern methods for modelling sequence data are often deep learning-based, composed of either recurrent neural networks (RNNs) or attention-based Transformers. A tremendous amount of research progress has recently been made in sequence modelling, particularly in the application to NLP problems. However, the inner workings of these sequence models can be difficult to dissect and intuitively understand.
This presentation/tutorial will start from the basics and gradually build upon concepts in order to impart an understanding of the inner mechanics of sequence models – why do we need specific architectures for sequences at all, when you could use standard feed-forward networks? How do RNNs actually handle sequential information, and why do LSTM units help longer-term remembering of information? How can Transformers do such a good job at modelling sequences without any recurrence or convolutions?
In the practical portion of this tutorial, attendees will learn how to build their own LSTM-based language model in Keras. A few other use cases of deep learning-based sequence modelling will be discussed – including sentiment analysis (prediction of the emotional valence of a piece of text) and machine translation (automatic translation between different languages).
The goals of this presentation are to provide an overview of popular sequence-based problems, impart an intuition for how the most commonly-used sequence models work under the hood, and show that quite similar architectures are used to solve sequence-based problems across many domains.
It’s long ago, approx. 30 years, since AI was not only a topic for Science-Fiction writers, but also a major research field surrounded with huge hopes and investments. But the over-inflated expectations ended in a subsequent crash and followed by a period of absent funding and interest – the so-called AI winter. However, the last 3 years changed everything – again. Deep learning, a machine learning technique inspired by the human brain, successfully crushed one benchmark after another and tech companies, like Google, Facebook and Microsoft, started to invest billions in AI research. “The pace of progress in artificial general intelligence is incredible fast” (Elon Musk – CEO Tesla & SpaceX) leading to an AI that “would be either the best or the worst thing ever to happen to humanity” (Stephen Hawking – Physicist).
What sparked this new Hype? How is Deep Learning different from previous approaches? Are the advancing AI technologies really a threat for humanity? Let’s look behind the curtain and unravel the reality. This talk will explore why Sundar Pichai (CEO Google) recently announced that “machine learning is a core transformative way by which Google is rethinking everything they are doing” and explain why "Deep Learning is probably one of the most exciting things that is happening in the computer industry” (Jen-Hsun Huang – CEO NVIDIA).
Either a new AI “winter is coming” (Ned Stark – House Stark) or this new wave of innovation might turn out as the “last invention humans ever need to make” (Nick Bostrom – AI Philosoph). Or maybe it’s just another great technology helping humans to achieve more.
RNN AND LSTM
This document provides an overview of RNNs and LSTMs:
1. RNNs can process sequential data like time series data using internal hidden states.
2. LSTMs are a type of RNN that use memory cells to store information for long periods of time.
3. LSTMs have input, forget, and output gates that control information flow into and out of the memory cell.
Basics of RNNs and its applications with following papers:
- Generating Sequences With Recurrent Neural Networks, 2013
- Show and Tell: A Neural Image Caption Generator, 2014
- Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, 2015
- DenseCap: Fully Convolutional Localization Networks for Dense Captioning, 2015
- Deep Tracking- Seeing Beyond Seeing Using Recurrent Neural Networks, 2016
- Robust Modeling and Prediction in Dynamic Environments Using Recurrent Flow Networks, 2016
- Social LSTM- Human Trajectory Prediction in Crowded Spaces, 2016
- DESIRE- Distant Future Prediction in Dynamic Scenes with Interacting Agents, 2017
- Predictive State Recurrent Neural Networks, 2017
Recurrent neural networks (RNNs) and long short-term memory (LSTM) networks can be used for sequence modeling tasks like predicting the next word. RNNs apply the same function to each element of a sequence but struggle with long-term dependencies. LSTMs address this with a gated cell that can maintain information over many time steps by optionally adding, removing, or updating cell state. LSTMs are better for tasks like language modeling since they can remember inputs from much earlier in the sequence. RNNs and LSTMs have applications in areas like music generation, machine translation, and predictive modeling.
This Edureka Recurrent Neural Networks tutorial will help you in understanding why we need Recurrent Neural Networks (RNN) and what exactly it is. It also explains few issues with training a Recurrent Neural Network and how to overcome those challenges using LSTMs. The last section includes a use-case of LSTM to predict the next word using a sample short story
Below are the topics covered in this tutorial:
1. Why Not Feedforward Networks?
2. What Are Recurrent Neural Networks?
3. Training A Recurrent Neural Network
4. Issues With Recurrent Neural Networks - Vanishing And Exploding Gradient
5. Long Short-Term Memory Networks (LSTMs)
6. LSTM Use-Case
Introduction to Generative Adversarial Networks (GANs) by Michał Maj
Full story: https://appsilon.com/satellite-imagery-generation-with-gans/
Recurrent Neural Network
ACRRL
Applied Control & Robotics Research Laboratory of Shiraz University
Department of Power and Control Engineering, Shiraz University, Fars, Iran.
Mohammad Sabouri
https://sites.google.com/view/acrrl/
Deep Learning: Recurrent Neural Network (Chapter 10) Larry Guo
This Material is an in_depth study report of Recurrent Neural Network (RNN)
Material mainly from Deep Learning Book Bible, http://www.deeplearningbook.org/
Topics: Briefing, Theory Proof, Variation, Gated RNNN Intuition. Real World Application
Application (CNN+RNN on SVHN)
Also a video (In Chinese)
https://www.youtube.com/watch?v=p6xzPqRd46w
A fast-paced introduction to Deep Learning concepts, such as activation functions, cost functions, back propagation, and then a quick dive into CNNs. Basic knowledge of vectors, matrices, and derivatives is helpful in order to derive the maximum benefit from this session.
The document provides an overview of Long Short Term Memory (LSTM) networks. It discusses:
1) The vanishing gradient problem in traditional RNNs and how LSTMs address it through gated cells that allow information to persist without decay.
2) The key components of LSTMs - forget gates, input gates, output gates and cell states - and how they control the flow of information.
3) Common variations of LSTMs including peephole connections, coupled forget/input gates, and Gated Recurrent Units (GRUs). Applications of LSTMs in areas like speech recognition, machine translation and more are also mentioned.
Part 2 of the Deep Learning Fundamentals Series, this session discusses Tuning Training (including hyperparameters, overfitting/underfitting), Training Algorithms (including different learning rates, backpropagation), Optimization (including stochastic gradient descent, momentum, Nesterov Accelerated Gradient, RMSprop, Adaptive algorithms - Adam, Adadelta, etc.), and a primer on Convolutional Neural Networks. The demos included in these slides are running on Keras with TensorFlow backend on Databricks.
The document discusses Long Short Term Memory (LSTM) networks, which are a type of recurrent neural network capable of learning long-term dependencies. It explains that unlike standard RNNs, LSTMs use forget, input, and output gates to control the flow of information into and out of the cell state, allowing them to better capture long-range temporal dependencies in sequential data like text, audio, and time-series data. The document provides details on how LSTM gates work and how LSTMs can be used for applications involving sequential data like machine translation and question answering.
This document provides an introduction to deep learning. It begins with an overview of artificial intelligence techniques like computer vision, speech processing, and natural language processing that benefit from deep learning. It then reviews the history of deep learning algorithms from perceptrons to modern deep neural networks. The core concepts of deep learning processes, neural network architectures, and training techniques like backpropagation are explained. Popular deep learning frameworks like TensorFlow, Keras, and PyTorch are also introduced. Finally, examples of convolutional neural networks, recurrent neural networks, and generative adversarial networks are briefly described along with tips for training deep neural networks and resources for further learning.
This document provides an introduction to neural networks. It discusses how neural networks have recently achieved state-of-the-art results in areas like image and speech recognition and how they were able to beat a human player at the game of Go. It then provides a brief history of neural networks, from the early perceptron model to today's deep learning approaches. It notes how neural networks can automatically learn features from data rather than requiring handcrafted features. The document concludes with an overview of commonly used neural network components and libraries for building neural networks today.
MDEC Data Matters Series: machine learning and Deep Learning, A PrimerPoo Kuan Hoong
The document provides an overview of machine learning and deep learning. It discusses the history and development of neural networks, including deep belief networks, convolutional neural networks, and recurrent neural networks. Applications of deep learning in areas like computer vision, natural language processing, and robotics are also covered. Finally, popular platforms, frameworks and libraries for developing deep learning models are presented, along with examples of pre-trained models that are available.
This document provides an introduction to machine learning and artificial intelligence. It discusses the types of machine learning tasks including supervised learning, unsupervised learning, and reinforcement learning. It also summarizes commonly used machine learning algorithms and frameworks. Examples are given of applying machine learning to tasks like image classification, sentiment analysis, and handwritten digit recognition. Issues that can cause machine learning projects to fail are identified and approaches to addressing different machine learning problems are outlined.
This document provides an introduction to machine learning and artificial intelligence. It discusses the types of machine learning tasks including supervised learning, unsupervised learning, and reinforcement learning. It also summarizes commonly used machine learning algorithms and frameworks. Examples are given of applying machine learning to tasks like image classification, sentiment analysis, and handwritten digit recognition. Issues that can cause machine learning projects to fail are identified and approaches to addressing different machine learning problems are outlined.
This document provides an introduction to machine learning and artificial intelligence. It discusses the types of machine learning tasks including supervised learning, unsupervised learning, and reinforcement learning. It also summarizes commonly used machine learning algorithms and frameworks. Examples are given of applying machine learning to tasks like image classification, sentiment analysis, and handwritten digit recognition. Issues that can cause machine learning projects to fail are identified and approaches to addressing different machine learning problems are outlined.
Notes from 2016 bay area deep learning school Niketan Pansare
Slide-deck for the lunch talk at IBM Almaden Research Center on Oct 11, 2016.
Abstract: In this lunch talk, I will give a high-level summary of bay area deep learning school which was held at Stanford on Sept 24 and 25. The videos and slides of the lectures are available online at http://www.bayareadlschool.org/. I will also give a very brief introduction of deep learning.
Deep learning is introduced along with its applications and key players in the field. The document discusses the problem space of inputs and outputs for deep learning systems. It describes what deep learning is, providing definitions and explaining the rise of neural networks. Key deep learning architectures like convolutional neural networks are overviewed along with a brief history and motivations for deep learning.
The document summarizes a presentation on building artificial neural networks. It discusses an overview of machine learning algorithms that will be covered in upcoming sessions, including supervised and unsupervised learning methods as well as deep learning. It then provides details on feedforward neural networks, including their structure, how data is fed through the network, and how weights are learned through backpropagation and gradient descent. Applications discussed include voice recognition, object recognition, conversation bots, auto-driving cars, and gaming.
David Kale and Ruben Fizsel from Skymind talk about deep learning for the JVM and enterprise using deeplearning4j (DL4J). Deep learning (nouveau neural nets) have sparked a renaissance in empirical machine learning with breakthroughs in computer vision, speech recognition, and natural language processing. However, many popular deep learning frameworks are targeted to researchers and poorly suited to enterprise settings that use Java-centric big data ecosystems. DL4J bridges the gap, bringing high performance numerical linear algebra libraries and state-of-the-art deep learning functionality to the JVM.
This document provides an overview of recurrent neural networks (RNNs) and long short-term memory (LSTM) networks. It discusses how RNNs can be used for sequence modeling tasks like sentiment analysis, machine translation, and speech recognition by incorporating context or memory from previous steps. LSTMs are presented as an improvement over basic RNNs that can learn long-term dependencies in sequences using forget gates, input gates, and output gates to control the flow of information through the network.
This document provides an overview of three types of machine learning: supervised learning, reinforcement learning, and unsupervised learning. It then discusses supervised learning in more detail, explaining that each training case consists of an input and target output. Regression aims to predict a real number output, while classification predicts a class label. The learning process typically involves choosing a model and adjusting its parameters to reduce the discrepancy between the model's predicted output and the true target output on each training case.
More information, visit: http://www.godatadriven.com/accelerator.html
Data scientists aren’t a nice-to-have anymore, they are a must-have. Businesses of all sizes are scooping up this new breed of engineering professional. But how do you find the right one for your business?
The Data Science Accelerator Program is a one year program, delivered in Amsterdam by world-class industry practitioners. It provides your aspiring data scientists with intensive on- and off-site instruction, access to an extensive network of speakers and mentors and coaching.
The Data Science Accelerator Program helps you assess and radically develop the skills of your data science staff or recruits.
Our goal is to deliver you excellent data scientists that help you become a data driven enterprise.
The right tools
We teach your organisation the proven data science tools.
The right hands
We are trusted by many industry leading partners.
The right experience
We've done big data and data science at many clients, we know what the real world is like.
The right experts
We have a world class selection of lecturers that you will be working with.
Vincent D. Warmerdam
Jonathan Samoocha
Ivo Everts
Rogier van der Geer
Ron van Weverwijk
Giovanni Lanzani
The right curriculum
We meet twice a month. Once for a lecture, once for a hackathon.
Lectures
The RStudio stack.
The art of simulation.
The iPython stack.
Linear modelling.
Operations research.
Nonlinear modelling.
Clustering & ensemble methods.
Natural language processing.
Time series.
Visualisation.
Scaling to big data.
Advanced topics.
Hackathons
Scrape and mine the internet.
Solving multiarmed bandit problems.
Webdev with flask and pandas as a backend.
Build an automation script for linear models.
Build a heuristic tsp solver.
Code review your automation for nonlinear models.
Build a method that outperforms random forests.
Build a markov chain to generate song lyrics.
Predict an optimal portfolio for the stock market.
Create an interactive d3 app with backend.
Start up a spark cluster with large s3 data.
You pick!
Interested?
Ping us here. [email protected]
Interest in Deep Learning has been growing in the past few years. With advances in software and hardware technologies, Neural Networks are making a resurgence. With interest in AI based applications growing, and companies like IBM, Google, Microsoft, NVidia investing heavily in computing and software applications, it is time to understand Deep Learning better!
In this lecture, we will get an introduction to Autoencoders and Recurrent Neural Networks and understand the state-of-the-art in hardware and software architectures. Functional Demos will be presented in Keras, a popular Python package with a backend in Theano. This will be a preview of the QuantUniversity Deep Learning Workshop that will be offered in 2017.
Urs Köster - Convolutional and Recurrent Neural NetworksIntel Nervana
Speaker: Urs Köster, PhD
Urs will join us to dive deep into the field of Deep Learning and focus on Convolutional and Recurrent Neural Networks. The talk will be followed by a workshop highlighting neon™, an open source python based deep learning framework that has been built from the ground up for speed and ease of use.
Evolution of Deep Learning and new advancementsChitta Ranjan
Earlier known as neural networks, deep learning saw a remarkable resurgence in the past decade. Neural networks did not find enough adopters in the past century due to its limited accuracy in real world applications (due to various reasons) and difficult interpretation. Many of these limitations got resolved in the recent years, and it was re-branded as deep learning. Now deep learning is widely used in industry and has become a popular research topic in academia. Learning about the passage of its evolution and development is intriguing. In this presentation, we will learn about how we resolved the issues in last generation neural networks, how we reached to the recent advanced methods from the earlier works, and different components of deep learning models.
NumPyCNNAndroid: A Library for Straightforward Implementation of Convolutiona...Ahmed Gad
The presentation of my paper titled "#NumPyCNNAndroid: A Library for Straightforward Implementation of #ConvolutionalNeuralNetworks for #Android Devices" at the second International Conference of Innovative Trends in #ComputerEngineering (ITCE 2019).
The paper proposes a library for implementing convolutional neural networks (CNNs) in order to run on Android devices. The process of running the CNN on the mobile devices is straightforward and does not require an in-between step for model conversion as it uses #Kivy cross-platform library.
The CNN layers are implemented in #NumPy. You can find their implementation in my #GitHub project at this link: https://github.com/ahmedfgad/NumPyCNN
The library is also open source available here: https://github.com/ahmedfgad/NumPyCNNAndroid
There are 2 modes of operation for this work. The first one is training the CNN on the mobile device but it is very time-consuming at least in the current version. The second and preferred way is to train the CNN in a desktop computer and then use it on the mobile device.
This document summarizes several winning solutions from Kaggle competitions related to retail sales forecasting. It describes the data and metrics used in the competitions and highlights some common techniques from top solutions, including feature engineering of recent and temporal data, using gradient boosted trees and ensembles of models, and incorporating additional contextual data like weather and promotions.
Richard Bellman coined the term "dynamic programming" to describe his mathematical research at RAND Corporation. Dynamic programming is a method for solving complex problems by breaking them down into simpler subproblems. The document provides examples of using dynamic programming to solve the Fibonacci sequence, longest common subsequence, wildcard matching, and matrix chain multiplication problems. It also discusses using dynamic programming and hidden Markov models for part-of-speech tagging via the Viterbi algorithm.
This document provides an overview of TensorFlow 2.0 and discusses several key features:
- TensorFlow 2.0 allows for deployment anywhere and supports eager execution for interactive development.
- Keras APIs can be used for both symbolic and imperative model building. Estimators provide high-level tools for working with models at scale.
- TensorFlow Hub contains pre-trained models that can be used for transfer learning. Examples of image and text models are listed.
- Custom models can be built using GradientTape for automatic differentiation and custom training loops. Data can be loaded from files, datasets, or TensorFlow Datasets.
This document summarizes Yan Xu's presentation on practical applications of multi-armed bandits. Bandits can be used for personalized recommendation, such as recommending news articles, by balancing exploration of new articles with exploitation of known good articles. Amazon's bandit algorithm allows for real-time optimization of multiple variables by modeling interactions between variables. The algorithm was able to increase website conversion by 21% after a single week of optimization.
This document discusses various algorithms for multi-armed bandit problems including k-armed bandits, action value methods like epsilon-greedy, tracking non-stationary problems, optimistic initial values, upper confidence bound action selection, gradient bandit algorithms, contextual bandits, and Thomson sampling. The k-armed bandit problem involves choosing actions to maximize reward over time without knowing the expected reward of each action. The document outlines methods for balancing exploration of unknown actions with exploitation of best known actions.
The document provides an introduction and overview of auto-encoders, including their architecture, learning and inference processes, and applications. It discusses how auto-encoders can learn hierarchical representations of data in an unsupervised manner by compressing the input into a code and then reconstructing the output from that code. Sparse auto-encoders and stacking multiple auto-encoders are also covered. The document uses handwritten digit recognition as an example application to illustrate these concepts.
Sr. Architect Pradeep Reddy, from Qubole, presents the state of Data Science in the enterprise industries today, followed by deep dive of an end-to-end real world machine learning use case. We'll explore the best practices and challenges of big data operations when developing new machine learning features and advanced analytics products at scale in the cloud.
Deep Feed Forward Neural Networks and RegularizationYan Xu
Deep feedforward networks use regularization techniques like L2/L1 regularization, dropout, batch normalization, and early stopping to reduce overfitting. They employ techniques like data augmentation to increase the size and variability of training datasets. Backpropagation allows information about the loss to flow backward through the network to efficiently compute gradients and update weights with gradient descent.
Linear algebra and probability (Deep Learning chapter 2&3)Yan Xu
Linear algebra and probability concepts are summarized in 3 sentences:
Scalars, vectors, matrices, and tensors are introduced as the basic components of linear algebra. Common linear algebra operations like transpose, addition, and multiplication are described. Probability concepts such as random variables, probability distributions, moments, and the central limit theorem are covered to lay the foundation for understanding deep learning techniques.
HML: Historical View and Trends of Deep LearningYan Xu
The document provides a historical view and trends of deep learning. It discusses that deep learning models have evolved in several waves since the 1940s, with key developments including the backpropagation algorithm in 1986 and deep belief networks with pretraining in 2006. Current trends include growing datasets, increasing numbers of neurons and connections per neuron, and higher accuracy on tasks involving vision, NLP and games. Research trends focus on generative models, domain alignment, meta-learning, using graphs as inputs, and program induction.
This document discusses deep reinforcement learning and how it was applied in AlphaGo to master the game of Go. It provides an overview of deep learning, reinforcement learning, and how AlphaGo combined the two approaches. AlphaGo used deep neural networks to mimic human expert moves and play games against itself to estimate win probabilities. It had a policy network to choose moves and a value network to estimate game outcomes. Through deep reinforcement learning, AlphaGo was able to achieve superhuman performance at the game of Go.
This document summarizes various optimization techniques for deep learning models, including gradient descent, stochastic gradient descent, and variants like momentum, Nesterov's accelerated gradient, AdaGrad, RMSProp, and Adam. It provides an overview of how each technique works and comparisons of their performance on image classification tasks using MNIST and CIFAR-10 datasets. The document concludes by encouraging attendees to try out the different optimization methods in Keras and provides resources for further deep learning topics.
The document summarizes Yan Xu's upcoming presentation at the Houston Machine Learning Meetup on dimension reduction techniques. Yan will cover linear methods like PCA and nonlinear methods such as ISOMAP, LLE, and t-SNE. She will explain how these methods work, including preserving variance with PCA, using geodesic distances with ISOMAP, and modeling local neighborhoods with LLE and t-SNE. Yan will also demonstrate these methods on a dataset of handwritten digits. The meetup is part of a broader roadmap of machine learning topics that will be covered in future sessions.
Mean shift clustering finds clusters by locating peaks in the probability density function of the data. It iteratively moves data points to the mean of nearby points until convergence. Hierarchical clustering builds clusters gradually by either merging or splitting clusters at each step. There are two types: divisive which splits clusters, and agglomerative which merges clusters. Agglomerative clustering starts with each point as a cluster and iteratively merges the closest pair of clusters until all are merged based on a chosen linkage method like complete or average linkage. The choice of distance metric and linkage method impacts the resulting clusters.
This document outlines the roadmap and agenda for a machine learning meetup covering clustering algorithms. The meetup will include sessions on k-means clustering, DBSCAN, hierarchical clustering, mean shift, spectral clustering and dimension reduction. Spectral clustering will be covered in two sessions focusing on the mathematical foundations and applications in computer vision. The meetup aims to provide an overview of machine learning techniques and their applications in domains such as business analytics, recommendation systems, natural language processing and the energy industry.
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptxhipachi8
Vermicomposting: A sustainable practice converting organic waste into nutrient-rich fertilizer using worms, promoting eco-friendly agriculture, reducing waste, and supporting environmentally conscious gardening and farming practices naturally.
Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...muralinath2
Homeothermic animals, poikilothermic animals, metabolic activities, muscular activities, radiation of heat from environment, shivering, brown fat tissue, temperature, cinduction, convection, radiation, evaporation, panting, chemical thermogenesis, hyper pyrexia, hypothermia, second law of thermodynamics, mild hypothrtmia, moderate hypothermia, severe hypothertmia, low-grade fever, moderate=grade fever, high-grade fever, heat loss center, heat gain center
Infrastructure for Tracking Information Flow from Social Media to U.S. TV New...Himarsha Jayanetti
This study examines the intersection between social media and mainstream television (TV) news with an aim to understand how social media content amplifies its impact through TV broadcasts. While many studies emphasize social media as a primary platform for information dissemination, they often underestimate its total influence by focusing solely on interactions within the platform. This research examines instances where social media posts gain prominence on TV broadcasts, reaching new audiences and prompting public discourse. By using TV news closed captions, on-screen text recognition, and social media logo detection, we analyze how social media is referenced in TV news.
DNA Profiling and STR Typing in Forensics: From Molecular Techniques to Real-...home
This comprehensive assignment explores the pivotal role of DNA profiling and Short Tandem Repeat (STR) analysis in forensic science and genetic studies. The document begins by laying the molecular foundations of DNA, discussing its double helix structure, the significance of genetic variation, and how forensic science exploits these variations for human identification.
The historical journey of DNA fingerprinting is thoroughly examined, highlighting the revolutionary contributions of Dr. Alec Jeffreys, who first introduced the concept of using repetitive DNA regions for identification. Real-world forensic breakthroughs, such as the Colin Pitchfork case, illustrate the life-saving potential of this technology.
A detailed breakdown of traditional and modern DNA typing methods follows, including RFLP, VNTRs, AFLP, and especially PCR-based STR analysis, now considered the gold standard in forensic labs worldwide. The principles behind STR marker types, CODIS loci, Y-chromosome STRs, and the capillary electrophoresis (CZE) method are thoroughly explained. The steps of DNA profiling—from sample collection and amplification to allele detection using electropherograms (EPGs)—are presented in a clear and systematic manner.
Beyond crime-solving, the document explores the diverse applications of STR typing:
Monitoring cell line authenticity
Detecting genetic chimerism
Tracking bone marrow transplant engraftment
Studying population genetics
Investigating evolutionary history
Identifying lost individuals in mass disasters
Ethical considerations and potential misuse of DNA data are acknowledged, emphasizing the need for careful policy and regulation.
Whether you're a biotechnology student, a forensic professional, or a researcher, this document offers an in-depth look at how DNA and STRs transform science, law, and society.
Structure formation with primordial black holes: collisional dynamics, binari...Sérgio Sacani
Primordial black holes (PBHs) could compose the dark matter content of the Universe. We present the first simulations of cosmological structure formation with PBH dark matter that consistently include collisional few-body effects, post-Newtonian orbit corrections, orbital decay due to gravitational wave emission, and black-hole mergers. We carefully construct initial conditions by considering the evolution during radiation domination as well as early-forming binary systems. We identify numerous dynamical effects due to the collisional nature of PBH dark matter, including evolution of the internal structures of PBH halos and the formation of a hot component of PBHs. We also study the properties of the emergent population of PBH binary systems, distinguishing those that form at primordial times from those that form during the nonlinear structure formation process. These results will be crucial to sharpen constraints on the PBH scenario derived from observational constraints on the gravitational wave background. Even under conservative assumptions, the gravitational radiation emitted over the course of the simulation appears to exceed current limits from ground-based experiments, but this depends on the evolution of the gravitational wave spectrum and PBH merger rate toward lower redshifts.
Protective function of skin, protection from mechanical blow, UV rays, regulation of water and electrolyte balance, absorptive activity, secretory activity, excretory activity, storage activity, synthetic activity, sensory activity, role of sweat glands regarding heat loss, cutaneous receptors and stratum corneum
Gender Bias and Empathy in Robots: Insights into Robotic Service FailuresSelcen Ozturkcan
Introduction to Recurrent Neural Network
1. Yan Xu
Houston Machine Learning Meetup
May 20, 2017
Introduction to Recurrent Neural Network
2. Roadmap
• Tour of machine learning algorithms (1 session)
• Feature engineering (1 session)
• Feature selection - Yan
• Supervised learning (4 sessions)
• Regression models -Yan
• SVM and kernel SVM - Yan
• Tree-based models - Dario
• Bayesian method - Xiaoyang
• Ensemble models - Yan
• Unsupervised learning (3 sessions)
• K-means clustering
• DBSCAN - Cheng
• Mean shift
• Agglomerative clustering – Kunal
• Spectral clustering – Yan
• Dimension reduction for data visualization - Yan
• Deep learning (4 sessions)
• Neural network - Yan
• Convolutional neural network – Hengyang Lu
• Recurrent neural networks – Yan
• Hands-on session with deep nets
Slides posted on:
http://www.slideshare.net/xuyangela
3. More deep learning coming up!
• Optimization in Deep learning
• Behind AlphaGo
• Mastering the game of Go with deep neural networks
and tree search
• Deep learning showcase: Share your experience!
4. Outline
• Recap on neural network
• Recurrent neural network overview
• Application of RNN
• Long short term memory network
• An example
17. Wide application of RNN
Image
classification
Image
Captioning
Sentiment
analysis
Machine
translation
Labeling each
frame of video
18. Special RNN: LSTM NN
• Short term memory
• Long term memory
the clouds are in the sky
I grew up in China … I speak fluent Chinese.
19. Special RNN: LSTM NN
SLTM in products!
• Google Translate
• Apple Siri
• Amazon Alexa
Cell
https://www.youtube.com/watch?v=93rzMHtYT_0
25. Training LSTM
• Back propagates like feed-forward nets
• Sum up all updates and applied to all
26. Example: Predicting next word
https://medium.com/towards-data-science/lstm-by-example-using-tensorflow-feb0c1968537
27. Each word represented by an integer. Output is a one-hot vector.
512 hidden units
Improvement?
Example: Predicting next word
28. Generating a story!
Input: a general council
had a general council to consider what measures they could take to outwit their
common enemy , the cat . some said this , and some said that but at last a young
mouse got
Input: mouse mouse mouse
mouse mouse mouse , neighbourhood and could receive a outwit always the neck
of the cat . some said this , and some said that but at last a young mouse got up
and said
29. Great reference
• http://colah.github.io/posts/2015-08-Understanding-LSTMs/
• https://medium.com/@ageitgey/machine-learning-is-fun-part-5-language-
translation-with-deep-learning-and-the-magic-of-sequences-2ace0acca0aa
• Visualizing and Understanding RNN:
• https://skillsmatter.com/skillscasts/6611-visualizing-and-understanding-recurrent-networks
30. Summary
• Learn about RNN, how it relates to feed forward NN
• Long short term memory RNN
• Keep gate
• Write gate
• Read gate
• Application and Example
31. Roadmap
• Tour of machine learning algorithms (1 session)
• Feature engineering (1 session)
• Feature selection - Yan
• Supervised learning (4 sessions)
• Regression models -Yan
• SVM and kernel SVM - Yan
• Tree-based models - Dario
• Bayesian method - Xiaoyang
• Ensemble models - Yan
• Unsupervised learning (3 sessions)
• K-means clustering
• DBSCAN - Cheng
• Mean shift
• Agglomerative clustering – Kunal
• Spectral clustering – Yan
• Dimension reduction for data visualization - Yan
• Deep learning (4 sessions)
• Neural network - Yan
• Convolutional neural network – Hengyang Lu
• Recurrent neural networks – Yan
• Hands-on session with deep nets
Slides posted on:
http://www.slideshare.net/xuyangela
More deep learning
coming up!
32. Thank you
Data Disruptors Conference, ddc (energy)
@ Houston, June 14
PROMO: HEDS99 to get 99$ off
Slides will be posted at: http://www.slideshare.net/xuyangela
Leave a
group
review
please