
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Append List to Pandas DataFrame Using iloc in Python
The iloc method is an integer-location based indexing for selection by position. We are using iloc to append a list to a DataFrame.
Let us first create a DataFrame. The data is in the form of lists of team rankings for our example −
# data in the form of list of team rankings Team = [['India', 1, 100],['Australia', 2, 85],['England', 3, 75],['New Zealand', 4 , 65],['South Africa', 5, 50],['Bangladesh', 6, 40]] # Creating a DataFrame and adding columns dataFrame = pd.DataFrame(Team, columns=['Country', 'Rank', 'Points'])
Following is the row to be appended −
myList = ["Sri Lanka", 7, 30]
Append the above row using iloc(). 5 means index 6 i.e. position 6 row will get replaced with the above new row −
dataFrame.iloc[5] = myList
Example
Following is the code −
import pandas as pd # data in the form of list of team rankings Team = [['India', 1, 100],['Australia', 2, 85],['England', 3, 75],['New Zealand', 4 , 65],['South Africa', 5, 50],['Bangladesh', 6, 40]] # Creating a DataFrame and adding columns dataFrame = pd.DataFrame(Team, columns=['Country', 'Rank', 'Points']) print"DataFrame...\n",dataFrame # row to be appended myList = ["Sri Lanka", 7, 30] # append the above row using iloc() # 5 means index 6 i.e. position 6 row will get replaced with the above new row dataFrame.iloc[5] = myList # display the update dataframe print"\nUpdated DataFrame after appending a row using iloc...\n",dataFrame
Output
This will produce the following output −
DataFrame... Country Rank Points 0 India 1 100 1 Australia 2 85 2 England 3 75 3 New Zealand 4 65 4 South Africa 5 50 5 Bangladesh 6 40 Updated DataFrame after appending a row using iloc... Country Rank Points 0 India 1 100 1 Australia 2 85 2 England 3 75 3 New Zealand 4 65 4 South Africa 5 50 5 Sri Lanka 7 30
Advertisements