
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find Rate of Return for Vector Values in R
To find the rate of return for a vector values, we can use the formula for rate of return. For example, if we have a vector called x then the rate of return can be calculated by using the syntax diff(x)/x[-length(x)]. The output will be in decimal form and if we want to convert it to percentage then the output needs to be multiplied with 100, we can also input the same within the formula as (diff(x)/x[-length(x)])*100.
Example
x1<-rpois(100,80) x1
Output
[1] 59 74 66 82 88 78 66 63 68 70 82 77 73 82 87 86 78 83 [19] 101 75 70 77 71 77 79 68 90 81 85 79 81 99 64 64 74 90 [37] 90 71 70 88 74 91 89 80 96 78 80 74 72 90 101 63 89 77 [55] 67 81 74 79 76 75 82 95 65 74 80 77 73 83 110 92 93 71 [73] 87 84 70 74 101 72 89 68 94 77 71 87 89 87 66 80 67 65 [91] 84 80 92 85 86 73 75 78 78 81
Example
RateOfReturn_x1<-diff(x1)/x1[-length(x1)] RateOfReturn_x1
Output
[1] 0.25423729 -0.10810811 0.24242424 0.07317073 -0.11363636 -0.15384615 [7] -0.04545455 0.07936508 0.02941176 0.17142857 -0.06097561 -0.05194805 [13] 0.12328767 0.06097561 -0.01149425 -0.09302326 0.06410256 0.21686747 [19] -0.25742574 -0.06666667 0.10000000 -0.07792208 0.08450704 0.02597403 [25] -0.13924051 0.32352941 -0.10000000 0.04938272 -0.07058824 0.02531646 [31] 0.22222222 -0.35353535 0.00000000 0.15625000 0.21621622 0.00000000 [37] -0.21111111 -0.01408451 0.25714286 -0.15909091 0.22972973 -0.02197802 [43] -0.10112360 0.20000000 -0.18750000 0.02564103 -0.07500000 -0.02702703 [49] 0.25000000 0.12222222 -0.37623762 0.41269841 -0.13483146 -0.12987013 [55] 0.20895522 -0.08641975 0.06756757 -0.03797468 -0.01315789 0.09333333 [61] 0.15853659 -0.31578947 0.13846154 0.08108108 -0.03750000 -0.05194805 [67] 0.13698630 0.32530120 -0.16363636 0.01086957 -0.23655914 0.22535211 [73] -0.03448276 -0.16666667 0.05714286 0.36486486 -0.28712871 0.23611111 [79] -0.23595506 0.38235294 -0.18085106 -0.07792208 0.22535211 0.02298851 [85] -0.02247191 -0.24137931 0.21212121 -0.16250000 -0.02985075 0.29230769 [91] -0.04761905 0.15000000 -0.07608696 0.01176471 -0.15116279 0.02739726 [97] 0.04000000 0.00000000 0.03846154
Example
x2<-rpois(100,50) x2
Output
[1] 58 53 67 49 49 52 57 41 51 50 44 61 55 54 53 49 53 52 63 42 50 46 60 57 55 [26] 44 47 59 54 35 66 46 48 40 55 52 49 59 59 59 44 58 44 50 55 45 58 48 67 40 [51] 38 40 58 48 49 51 50 54 35 34 52 62 61 58 47 53 49 54 48 47 43 44 60 55 61 [76] 45 62 51 66 53 57 43 45 47 57 48 52 54 42 55 51 43 45 42 49 38 48 46 54 55
Example
RateOfReturn_x2<-diff(x2)/x2[-length(x2)] RateOfReturn_x2
Output
[1] -0.08620690 0.26415094 -0.26865672 0.00000000 0.06122449 0.09615385 [7] -0.28070175 0.24390244 -0.01960784 -0.12000000 0.38636364 -0.09836066 [13] -0.01818182 -0.01851852 -0.07547170 0.08163265 -0.01886792 0.21153846 [19] -0.33333333 0.19047619 -0.08000000 0.30434783 -0.05000000 -0.03508772 [25] -0.20000000 0.06818182 0.25531915 -0.08474576 -0.35185185 0.88571429 [31] -0.30303030 0.04347826 -0.16666667 0.37500000 -0.05454545 -0.05769231 [37] 0.20408163 0.00000000 0.00000000 -0.25423729 0.31818182 -0.24137931 [43] 0.13636364 0.10000000 -0.18181818 0.28888889 -0.17241379 0.39583333 [49] -0.40298507 -0.05000000 0.05263158 0.45000000 -0.17241379 0.02083333 [55] 0.04081633 -0.01960784 0.08000000 -0.35185185 -0.02857143 0.52941176 [61] 0.19230769 -0.01612903 -0.04918033 -0.18965517 0.12765957 -0.07547170 [67] 0.10204082 -0.11111111 -0.02083333 -0.08510638 0.02325581 0.36363636 [73] -0.08333333 0.10909091 -0.26229508 0.37777778 -0.17741935 0.29411765 [79] -0.19696970 0.07547170 -0.24561404 0.04651163 0.04444444 0.21276596 [85] -0.15789474 0.08333333 0.03846154 -0.22222222 0.30952381 -0.07272727 [91] -0.15686275 0.04651163 -0.06666667 0.16666667 -0.22448980 0.26315789 [97] -0.04166667 0.17391304 0.01851852
Example
x3<-sample(1:100,100,replace=TRUE) x3
Output
[1] 68 56 58 33 53 60 75 31 2 39 7 34 12 65 82 79 69 37 [19] 14 88 34 74 85 94 34 13 73 13 9 61 99 45 26 48 87 99 [37] 42 55 37 48 85 16 33 86 22 31 64 13 1 26 34 23 37 40 [55] 51 3 86 55 47 77 50 93 73 43 82 37 11 29 44 34 86 99 [73] 32 62 31 11 25 30 54 8 40 22 85 41 65 61 78 76 49 7 [91] 54 74 36 84 100 68 23 68 60 93
Example
RateOfReturn_x3<-diff(x3)/x3[-length(x3)] RateOfReturn_x3
Output
[1] -0.17647059 0.03571429 -0.43103448 0.60606061 0.13207547 0.25000000 [7] -0.58666667 -0.93548387 18.50000000 -0.82051282 3.85714286 -0.64705882 [13] 4.41666667 0.26153846 -0.03658537 -0.12658228 -0.46376812 -0.62162162 [19] 5.28571429 -0.61363636 1.17647059 0.14864865 0.10588235 -0.63829787 [25] -0.61764706 4.61538462 -0.82191781 -0.30769231 5.77777778 0.62295082 [31] -0.54545455 -0.42222222 0.84615385 0.81250000 0.13793103 -0.57575758 [37] 0.30952381 -0.32727273 0.29729730 0.77083333 -0.81176471 1.06250000 [43] 1.60606061 -0.74418605 0.40909091 1.06451613 -0.79687500 -0.92307692 [49] 25.00000000 0.30769231 -0.32352941 0.60869565 0.08108108 0.27500000 [55] -0.94117647 27.66666667 -0.36046512 -0.14545455 0.63829787 -0.35064935 [61] 0.86000000 -0.21505376 -0.41095890 0.90697674 -0.54878049 -0.70270270 [67] 1.63636364 0.51724138 -0.22727273 1.52941176 0.15116279 -0.67676768 [73] 0.93750000 -0.50000000 -0.64516129 1.27272727 0.20000000 0.80000000 [79] -0.85185185 4.00000000 -0.45000000 2.86363636 -0.51764706 0.58536585 [85] -0.06153846 0.27868852 -0.02564103 -0.35526316 -0.85714286 6.71428571 [91] 0.37037037 -0.51351351 1.33333333 0.19047619 -0.32000000 -0.66176471 [97] 1.95652174 -0.11764706 0.55000000
Example
x4<-sample(1:10,100,replace=TRUE) x4
Output
[1] 3 2 5 10 10 10 3 2 6 3 5 9 8 9 4 2 2 10 7 5 7 5 10 4 4 [26] 6 6 9 8 3 9 5 9 10 5 5 3 2 3 1 8 9 5 10 9 6 10 4 4 8 [51] 6 2 10 10 10 6 4 9 4 9 1 8 3 8 5 1 10 7 4 2 10 9 4 10 3 [76] 2 3 10 1 4 7 3 1 9 10 2 1 8 5 7 10 1 5 3 1 6 9 2 1 4
Example
RateOfReturn_x4<-diff(x4)/x4[-length(x4)] RateOfReturn_x4
Output
[1] -0.3333333 1.5000000 1.0000000 0.0000000 0.0000000 -0.7000000 [7] -0.3333333 2.0000000 -0.5000000 0.6666667 0.8000000 -0.1111111 [13] 0.1250000 -0.5555556 -0.5000000 0.0000000 4.0000000 -0.3000000 [19] -0.2857143 0.4000000 -0.2857143 1.0000000 -0.6000000 0.0000000 [25] 0.5000000 0.0000000 0.5000000 -0.1111111 -0.6250000 2.0000000 [31] -0.4444444 0.8000000 0.1111111 -0.5000000 0.0000000 -0.4000000 [37] -0.3333333 0.5000000 -0.6666667 7.0000000 0.1250000 -0.4444444 [43] 1.0000000 -0.1000000 -0.3333333 0.6666667 -0.6000000 0.0000000 [49] 1.0000000 -0.2500000 -0.6666667 4.0000000 0.0000000 0.0000000 [55] -0.4000000 -0.3333333 1.2500000 -0.5555556 1.2500000 -0.8888889 [61] 7.0000000 -0.6250000 1.6666667 -0.3750000 -0.8000000 9.0000000 [67] -0.3000000 -0.4285714 -0.5000000 4.0000000 -0.1000000 -0.5555556 [73] 1.5000000 -0.7000000 -0.3333333 0.5000000 2.3333333 -0.9000000 [79] 3.0000000 0.7500000 -0.5714286 -0.6666667 8.0000000 0.1111111 [85] -0.8000000 -0.5000000 7.0000000 -0.3750000 0.4000000 0.4285714 [91] -0.9000000 4.0000000 -0.4000000 -0.6666667 5.0000000 0.5000000 [97] -0.7777778 -0.5000000 3.0000000
Advertisements