
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Return NumPy Array of Python Datetime Time Objects in Pandas
To return numpy array of python datetime.time objects, use the datetimeindex.time property in Pandas.
At first, import the required libraries −
import pandas as pd
Create a DatetimeIndex with period 3 and frequency as us i.e. nanoseconds. The timezone is Australia/Sydney −
datetimeindex = pd.date_range('2021-10-20 02:30:50', periods=3, tz='Australia/Sydney', freq='ns')
Display DateTimeIndex −
print("DateTimeIndex...\n", datetimeindex)
Returns only the time part of Timestamps without timezone information −
print("\nThe numpy array (time part)..\n",datetimeindex.time)
Example
Following is the code −
import pandas as pd # DatetimeIndex with period 3 and frequency as us i.e. nanoseconds # The timezone is Australia/Sydney datetimeindex = pd.date_range('2021-10-20 02:30:50', periods=3, tz='Australia/Sydney', freq='ns') # display DateTimeIndex print("DateTimeIndex...\n", datetimeindex) # Returns only the date part of Timestamps without timezone information print("\nThe numpy array (date part)..\n",datetimeindex.date) # Returns only the time part of Timestamps without timezone information print("\nThe numpy array (time part)..\n",datetimeindex.time)
Output
This will produce the following code −
DateTimeIndex... DatetimeIndex([ '2021-10-20 02:30:50+11:00', '2021-10-20 02:30:50.000000001+11:00', '2021-10-20 02:30:50.000000002+11:00'], dtype='datetime64[ns, Australia/Sydney]', freq='N') The numpy array (date part).. [datetime.date(2021, 10, 20) datetime.date(2021, 10, 20) datetime.date(2021, 10, 20)] The numpy array (time part).. [datetime.time(2, 30, 50) datetime.time(2, 30, 50) datetime.time(2, 30, 50)]
Advertisements