
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Selecting with Complex Criteria from a Pandas DataFrame
We can use different criteria to compare all the column values of a Pandas DataFrame. We can perform comparison operations like df[col]<5, df[col]==10, etc. For example, if we use the criteria df[col]>2, then it will check all the values from col and compare whether they are greater than 2. For all the column values, it will return True if the condition holds, else False. Let's take an example and see how it's done.
Steps
- Create a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.
- Print the input DataFrame, df.
- Initialize a variable col, with a column name.
- Perform some comparison operations.
- Print the resultant DataFrame.
Example
import pandas as pd df = pd.DataFrame( { "x": [5, 2, 7, 0], "y": [4, 7, 5, 1], "z": [9, 3, 5, 1] } ) print "Input DataFrame is:\n", df col = "x" print "Elements > 5 in column ", col, ":\n", df[col] > 5 print "Elements == 5 in column ", col, ":\n", df[col] == 5 col = "y" print "Elements < 5 in column ", col, ":\n", df[col] < 5 print "Elements != 5 in column ", col, ":\n", df[col] != 5
Output
Input DataFrame is: x y z 0 5 4 9 1 2 7 3 2 7 5 5 3 0 1 1 Elements > 5 in column x : 0 False 1 False 2 True 3 False Name: x, dtype: bool Elements == 5 in column x : 0 True 1 False 2 False 3 False Name: x, dtype: bool Elements < 5 in column y : 0 True 1 False 2 False 3 True Name: y, dtype: bool Elements != 5 in column y : 0 True 1 True 2 False 3 True Name: y, dtype: bool
Advertisements