
HbbTV Companion 
Screen Sync

Chris Needham

Date of Presentation: 6 November 2017

W3C TPAC 2017



What is HbbTV?

• Open spec implemented by major TV manufacturers for 

the European market

• Defines an HTML+JS interactive application environment 

on the TV

• Single app running at any time

• HbbTV 1.x used widely in Europe

• HbbTV 2.0 First deployments in UK



HbbTV features

• A UA with a profile of HTML5 capabilities (CSS 2.1/3, DOM3, etc)

• TV specific functionality (extension of OIPF and CEA2014)

• Broadcast tuner

• PVR functions

• Conditional access modules (DRM)

• Additional features required by broadcasters

• DASH, TTML subtitles

• Synchronised media playback: combining broadcast and IP streams

• Companion screen interaction and synchronisation

• UHD

• etc



Companion Screen & Media Synchronisation Features in HbbTV 2.0

Companion screen features

• TV discovers companion

• TV launches companion app

• Companion discovers TV

• Companion launches HbbTV app

• “App to App” communication

Media Synchronisation features

• Application sync – HbbTV apps synchronise to content (broadcast & IP)

• Inter-device sync – Companion apps synchronise to TV content (broadcast & IP)

• Multi-stream sync – Replace broadcast audio or subtitles with IP content



Example use cases

Casting 

User browses programmes on iPlayer mobile app and chooses to “cast” it to watch it on the TV.

The user controls play/pause/seek from the iPlayer mobile app.

3. App-to-app communication

(to control play/seek/pause)

1. Discover TV

2. Launch HbbTV iPlayer with deep link



Example use cases

Personalising accessibility & shared viewing

Audio description / commentary / camera angle …

streamed to an app on the phone and frame-

accurately synchronised to the TV.

A different experience for everyone in the room.

New ways to deliver accessible services.

Take-away viewing

Phone/tablet shows same content as the TV, 

synchronised frame-accurately to it.

Take viewing temporarily with you out of the room, 

then rejoin seamlessly.



HbbTV application lifecycle

• Launched:

• from the home screen on connected T Vs

• by AIT signalling in a DVB broadcast

• by companion device via DIAL HbbTV app

• At any time an app is either:

• Broadcast-related

• Mixed with broadcast audio/video

• Must be listed as allowed in transport stream signalling (DVB AIT)

• Broadcast-independent

• No broadcast audio/video (but can play IP streams)

• Can become broadcast related if listed in AIT

• User exits app, or app is terminated by system



Discovering an HbbTV terminal 

• DIAL is for discovering a TV and launching TV apps

• Uses SSDP from UPnP for discovery

• M-SEARCH reply returns UPnP Device Description 

URL in response “Location” header

• HbbTV engine appears as a DIAL app

• Companion fetches status of HbbTV DIAL app.

Response includes:

• URL for app-to-app communication

• URL for inter-device synchronisation (DVB CSS-CII)

• User Agent string of the HbbTV engine

http://www.dial-multiscreen.org

Companion

Device

HbbTV 

Terminal

DIAL

server

HOME NETWORK

Companion App

SSDP M-SEARCH

NOTIFY : Location: <DD-URL>

HTTP GET <DD-URL>

HTTP GET <dial-URL>/HbbTV

200 : Application-URL: <dial-URL>

200 : HbbTV DIAL app status



Launching an HbbTV Application

This mechanism launches a 

broadcast independent 

HbbTV app.

The app can convert itself to 

broadcast related later, subject 

to suitable broadcast signalling.

Companion

Device

HbbTV Terminal

DIAL

server

HOME NETWORK

Companion App

DIAL launch “HbbTV” request

XML AIT

Broadcaster

HbbTV App

Launch

Ask user if not

pre-approved

Success/Failure

Reason



Launching an HbbTV Application – security

User security considerations:

User will be prompted to approve/deny

(unless HbbTV app is in whitelist by manufacturer or network operator)

HbbTV app is identified by its URL, as conveyed in

<applicationTransport> and <applicationLocation> elements in the XML AIT

(not including any ‘?’ query or ‘#’ fragment suffixes)

“Did you just request an application to be launched on this TV?”



App to app communication

HbbTV Terminal

HOME NETWORK

Companion Device

getApp2AppLocalBaseURL()

Javascript API calls

Open WebSocket [1]

Open WebSocket [2]

127.0.0.1

PAIRED

“pairingcomplete” “pairingcomplete”

WebSocket messages relayed in both directions

Broadcaster

HbbTV App

App2App

WebSocket ServerHbbTVCSManager

JS API
Companion App

LOCAL REMOTE

Get Remote Base URL 

using DIAL discovery

<object type="application/hbbtvCSManager" id="csMgr">



App to app communication

For pairing, the app-endpoint suffix must match

It does not matter who connects first

Once paired, the connection is transparent

Message content is application defined

Connections are 1-to-1, but multiple connections 

supported. The HbbTV app must create a separate 

connection for each companion

Connections are not secure

localBaseUrl = csMgr.getApp2AppLocalBaseURL();
appEndpoint = "uk.co.bbc.myapp";

ws = new WebSocket(localBaseUrl + appEndpoint);

ws.onmessage = function(evt) {
if (evt.data == "pairingcompleted") {

// can now send/receive msgs as normal
}

});



Mapping to Presentation API

Opening a presentation

const req = new PresentationRequest(url, params);

Or:

const req = new PresentationRequest(url);
req.start(params);

HbbTV applicationTransport and applicationLocation could be 

obtained from the presentation URL. 

Additional parameters: orgId and appId (for broadcast-related presentations, or 

UA could supply for broadcast-independent). 

Same-origin policy for mixed broadcast / Web content?



Mapping to Presentation API

Messaging between controlling and receiving pages

connection.send(channel, message);

connection.onmessage(channel, (message) => { ... });

HbbTV uses an app-endpoint to allow routing of messages between WebSocket 

connections. 

Must be known to both controlling and receiving pages.

One WebSocket connection per client

Add a channel parameter to the send and onmessage methods?



Media Synchronisation

Application sync

• Extract current time position for broadcast or IP streamed content

Inter-device sync:

• Allow companions to sync to the content being presented on the TV

• TV implements protocol server defined by DVB CSS spec (ETSI TS 103 286-2)

Multi-stream sync:

• Sync a DASH stream (and optionally EBU-TT-D subtitle document) to broadcast

Related:

• W3C Timing Object spec (Multi-Device Timing CG)

http://www.etsi.org/deliver/etsi_ts/103200_103299/10328602/01.02.01_60/ts_10328602v010201p.pdf


Companion Screen App Synchronisation



Inter-device synchronisation – DVB CSS protocols

Companion

App

HbbTV

Terminal

CSS-CII: Content Identification

CSS-TS: Timeline Synchronisation

CSS-WC: Wall Clock Synchronisation

DVB Synchronisation protocols

Broadcast or Internet TV

WebSockets + JSON

WebSockets + JSON

UDP

Companion
Content CSS-MRS



Media Synchronisation  Terminology

A Media object is the DOM element for the (broadcast or streamed) media being presented

Master media is the media (e.g. broadcast) that we are synchronising to

Other media is played back in sync with master media

A Timeline Selector specifies how to derive the timeline for a piece of media (broadcast, DASH, 

ISOBMFF, …)

A Correlation describes how to align other media to master media

urn:dvb:css:timeline:temi:11:1 MPEGTEMI broadcast timeline carried in component 11

urn:dvb:css:timeline:mpd:period:rel:1000
Time since start of MPEG DASH stream, measured in 

milliseconds



API lifecycle

1. Create and initialise a Media Synchroniser object:

• Select a media object (e.g. video/broadcast object) as the master

• Select the timeline to use from the master media

2. Use as required, in any combination:

• Query the current time (application sync)

• Enable/disable inter-device sync

• Start/stop synchronising other media to the master (multi-stream sync)

3. Change of master media (switch between broadcast & IP, or changed IP stream)

• Discard existing Media Synchroniser and initialise a new one



Create and initialise to nominate master media

Ensure the video/broadcast object is bound and ready in the “presenting” state:

vb.bindToCurrentChannel();
vb.onPlayStateChange = function() {

if (vb.playState == 2) { ...

… then initialise, setting broadcast video as the master media, using a TEMI timeline:

ms.initMediaSynchroniser(vb, "urn:dvb:css:timeline:temi:11:1");

<object type="video/broadcast" id="vb" />
<object type="application/hbbtvMediaSynchroniser" id="ms" />



Application synchronisation

Get the current timeline position of the master media, in seconds:

var secs = ms.currentTime;

console.log("Current TEMI timeline position:", secs);

Note:  This is the current time on the timeline specified by the Timeline Selector for the master 

media.

It is not the same as the currentTime property on a <video> or <audio> or A/V <object>



Inter-device synchronisation

Enable/disable synchronisation for companion devices:

ms.enableInterDeviceSync(function() { console.log("enabled!"); });
ms.disableInterDeviceSync(function() { console.log("disabled!"); });

Starts/stops the service in the TV that implement the DVB CSS protocols for synchronisation



References

• HbbTV 2.0.1 (ETSI TS 102 796 V1.4.1)

http://hbbtv.org/resources

• DVB Companion Screens and Streams; Part 2: Content Identification 

and Media Synchronization

(ETSI TS 103 286-2 V1.2.1)

https://www.dvb.org/standards/dvb_css

• Timing Object

http://webtiming.github.io/timingobject/

http://hbbtv.org/resources
https://www.dvb.org/standards/dvb_css
http://webtiming.github.io/timingobject/


Thank you

bbc.co.uk/rd

chris.needham@rd.bbc.co.uk

Email:


