这是一道需要用动态规划(dp)解的题,在所有dp中,算比较简单的,所以今天来说说思路和图解,首先他求的是最小路径的和,如果是求最短的路径 那么就需要我们利用回溯和BFS去解,求和的话 因为每个小格子移动只会是要么往下 要么往右,
现在开始解题,设原始数组为
1 3 1 3
1 5 1 3
4 2 1 3
1 1 1 1
那么我们根据他的行走路径就可以得出,只要找到图中箭头位置的最小路径和 再加上右下角的1 就是最短路径和,以此类推,设行为i,列为j
当i=0时 也就是最上面那行 他只能往右走
也就是dp[i][j]=dp[i][j-1]+dp[i]j
当j=0时dp[i][j]=dp[i-1][j]+dp[i]j
当i j都不为0时 这时就到了图片中红线圈起来的位置
我们需要计算这个元素的上方和左方最小的那个再加上当前元素 就是到达这个点的最小路径和
下图为指针走到 1,1位置 也就是i j都不为0时,计算路径和的思路
public int minPathSum(int[][] grid) {
for(int i = 0; i < grid.length; i++) {
for(int j = 0; j < grid[0].length; j++) {
if(i == 0 && j == 0) continue;
else if(i == 0) grid[i][j] = grid[i][j - 1] + grid[i][j];
else if(j == 0) grid[i][j] = grid[i - 1][j] + grid[i][j];
else grid[i][j] = Math.min(grid[i - 1][j], grid[i][j - 1]) + grid[i][j];
}
}
return grid[grid.length - 1][grid[0].length - 1];
}