Leetcode 1780. 判断一个数字是否可以表示成三的幂的和

本文介绍了一种算法,用于判断一个整数是否能表示为若干个不同的三的幂之和。提供了两种解决方案:迭代法和递归法,并分析了它们的时间与空间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给你一个整数 n ,如果你可以将 n 表示成若干个不同的三的幂之和,请你返回 true ,否则请返回 false 。

对于一个整数 y ,如果存在整数 x 满足 y == 3x ,我们称这个整数 y 是三的幂。

 

示例 1:

输入:n = 12
输出:true
解释:12 = 31 + 32

示例 2:

输入:n = 91
输出:true
解释:91 = 30 + 32 + 34

示例 3:

输入:n = 21
输出:false

 

提示:

    1 <= n <= 107

解法一:迭代

由于要将n表示成若干个不同的三的幂之和,那么可以转化为3进制。对于每个数来数不同位上要么是0,要么是1,若出现2,那么代表要用两次该幂值。通过取余来判断三进制位是否为2,若为2则不合法。
在这里插入图片描述

  • 时间复杂度:O(logn)O(logn)O(logn)
  • 空间复杂度:O(1)O(1)O(1)
class Solution {
    public boolean checkPowersOfThree(int n) {
        for (; n > 0 && n % 3 != 2; n /= 3);
        return n == 0;
    }
}
class Solution {
public:
    bool checkPowersOfThree(int n) {
        for (; n && n % 3 != 2; n /= 3);
        return !n;
    }
};

解法二:递归

  • 时间复杂度:O(logn)O(logn)O(logn)
  • 空间复杂度:O(1)O(1)O(1), 忽略递归产生的空间。
class Solution {
    public boolean checkPowersOfThree(int n) {
        return n == 0 || n % 3 != 2 && checkPowersOfThree(n / 3);
    }
}
class Solution {
public:
    bool checkPowersOfThree(int n) {
        return !n || n % 3 != 2 && checkPowersOfThree(n / 3);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值