给你一个整数 n ,如果你可以将 n 表示成若干个不同的三的幂之和,请你返回 true ,否则请返回 false 。
对于一个整数 y ,如果存在整数 x 满足 y == 3x ,我们称这个整数 y 是三的幂。
示例 1:
输入:n = 12
输出:true
解释:12 = 31 + 32
示例 2:
输入:n = 91
输出:true
解释:91 = 30 + 32 + 34
示例 3:
输入:n = 21
输出:false
提示:
1 <= n <= 107
解法一:迭代
由于要将n表示成若干个不同的三的幂之和,那么可以转化为3进制。对于每个数来数不同位上要么是0,要么是1,若出现2,那么代表要用两次该幂值。通过取余来判断三进制位是否为2,若为2则不合法。
- 时间复杂度:O(logn)O(logn)O(logn)
- 空间复杂度:O(1)O(1)O(1)
class Solution {
public boolean checkPowersOfThree(int n) {
for (; n > 0 && n % 3 != 2; n /= 3);
return n == 0;
}
}
class Solution {
public:
bool checkPowersOfThree(int n) {
for (; n && n % 3 != 2; n /= 3);
return !n;
}
};
解法二:递归
- 时间复杂度:O(logn)O(logn)O(logn)
- 空间复杂度:O(1)O(1)O(1), 忽略递归产生的空间。
class Solution {
public boolean checkPowersOfThree(int n) {
return n == 0 || n % 3 != 2 && checkPowersOfThree(n / 3);
}
}
class Solution {
public:
bool checkPowersOfThree(int n) {
return !n || n % 3 != 2 && checkPowersOfThree(n / 3);
}
};