Leetcode 1759. 统计同构子字符串的数目

本文介绍了一种高效算法,用于计算给定字符串中所有同构子字符串的数量,并通过示例详细解释了算法的工作原理及实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给你一个字符串 s ,返回 s 中 同构子字符串 的数目。由于答案可能很大,只需返回对 109 + 7 取余 后的结果。

同构字符串 的定义为:如果一个字符串中的所有字符都相同,那么该字符串就是同构字符串。

子字符串 是字符串中的一个连续字符序列。

 

示例 1:

输入:s = "abbcccaa"
输出:13
解释:同构子字符串如下所列:
"a"   出现 3 次。
"aa"  出现 1 次。
"b"   出现 2 次。
"bb"  出现 1 次。
"c"   出现 3 次。
"cc"  出现 2 次。
"ccc" 出现 1 次。
3 + 1 + 2 + 1 + 3 + 2 + 1 = 13

示例 2:

输入:s = "xy"
输出:2
解释:同构子字符串是 "x" 和 "y" 。

示例 3:

输入:s = "zzzzz"
输出:15

 

提示:

    1 <= s.length <= 105
    s 由小写字符串组成

解法一:数学

对于某个连续字串aaaaaaaaaaaa来说,同构字符串aaa出现4次,aaaaaa出现3次,aaaaaaaaa出现2次,aaaaaaaaaaaa出现1次。可以看出对于长度为nnn的相同字母的连续字串,同构字符串的出现次数为1+2+...+n1 + 2 + ... + n1+2+...+n, 即(n+1)∗n/2(n+1)*n / 2(n+1)n/2。我们从前往后遍历字符串的每一个字符,统计相同连续字母的子串长度cnt,每次让ans累加长度即可。

  • 时间复杂度:O(n)O(n)O(n)
  • 空间复杂度:O(1)O(1)O(1)
class Solution {
    public int countHomogenous(String s) {
        long ans = 1, cnt = 1, n = s.length();
        for (int i = 1; i < n; i++) ans += cnt = s.charAt(i) == s.charAt(i - 1) ? ++cnt : 1;
        return (int)(ans % 1000000007);
    }
}
class Solution {
public:
    int countHomogenous(string s) {
        long long ans = 1, cnt = 1, n = s.length();
        for (int i = 1; i < n; i++) ans += cnt = s[i] == s[i - 1] ? ++cnt : 1;
        return (int)(ans % 1000000007);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值