Leetcode 1801. 积压订单中的订单总数

文章描述了一个关于订单处理的问题,其中涉及采购和销售订单的匹配与积压。给定二维数组orders,包含订单的价格、数量和类型,需要计算所有订单处理后的积压订单总数。解法使用优先队列进行模拟,分别维护价格最小的销售订单和价格最大的采购订单堆,遍历所有订单并尝试匹配,最后统计两个堆中剩余的订单数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给你一个二维整数数组 orders ,其中每个 orders[i] = [pricei, amounti, orderTypei] 表示有 amounti 笔类型为 orderTypei 、价格为 pricei 的订单。

订单类型 orderTypei 可以分为两种:

    0 表示这是一批采购订单 buy
    1 表示这是一批销售订单 sell

注意,orders[i] 表示一批共计 amounti 笔的独立订单,这些订单的价格和类型相同。对于所有有效的 i ,由 orders[i] 表示的所有订单提交时间均早于 orders[i+1] 表示的所有订单。

存在由未执行订单组成的 积压订单 。积压订单最初是空的。提交订单时,会发生以下情况:

    如果该订单是一笔采购订单 buy ,则可以查看积压订单中价格 最低 的销售订单 sell 。如果该销售订单 sell 的价格 低于或等于 当前采购订单 buy 的价格,则匹配并执行这两笔订单,并将销售订单 sell 从积压订单中删除。否则,采购订单 buy 将会添加到积压订单中。
    反之亦然,如果该订单是一笔销售订单 sell ,则可以查看积压订单中价格 最高 的采购订单 buy 。如果该采购订单 buy 的价格 高于或等于 当前销售订单 sell 的价格,则匹配并执行这两笔订单,并将采购订单 buy 从积压订单中删除。否则,销售订单 sell 将会添加到积压订单中。

输入所有订单后,返回积压订单中的 订单总数 。由于数字可能很大,所以需要返回对 109 + 7 取余的结果。

 

示例 1:

输入:orders = [[10,5,0],[15,2,1],[25,1,1],[30,4,0]]
输出:6
解释:输入订单后会发生下述情况:
- 提交 5 笔采购订单,价格为 10 。没有销售订单,所以这 5 笔订单添加到积压订单中。
- 提交 2 笔销售订单,价格为 15 。没有采购订单的价格大于或等于 15 ,所以这 2 笔订单添加到积压订单中。
- 提交 1 笔销售订单,价格为 25 。没有采购订单的价格大于或等于 25 ,所以这 1 笔订单添加到积压订单中。
- 提交 4 笔采购订单,价格为 30 。前 2 笔采购订单与价格最低(价格为 15)的 2 笔销售订单匹配,从积压订单中删除这 2 笔销售订单。第 3 笔采购订单与价格最低的 1 笔销售订单匹配,销售订单价格为 25 ,从积压订单中删除这 1 笔销售订单。积压订单中不存在更多销售订单,所以第 4 笔采购订单需要添加到积压订单中。
最终,积压订单中有 5 笔价格为 10 的采购订单,和 1 笔价格为 30 的采购订单。所以积压订单中的订单总数为 6 。

示例 2:

输入:orders = [[7,1000000000,1],[15,3,0],[5,999999995,0],[5,1,1]]
输出:999999984
解释:输入订单后会发生下述情况:
- 提交 109 笔销售订单,价格为 7 。没有采购订单,所以这 109 笔订单添加到积压订单中。
- 提交 3 笔采购订单,价格为 15 。这些采购订单与价格最低(价格为 7 )的 3 笔销售订单匹配,从积压订单中删除这 3 笔销售订单。
- 提交 999999995 笔采购订单,价格为 5 。销售订单的最低价为 7 ,所以这 999999995 笔订单添加到积压订单中。
- 提交 1 笔销售订单,价格为 5 。这笔销售订单与价格最高(价格为 5 )的 1 笔采购订单匹配,从积压订单中删除这 1 笔采购订单。
最终,积压订单中有 (1000000000-3) 笔价格为 7 的销售订单,和 (999999995-1) 笔价格为 5 的采购订单。所以积压订单中的订单总数为 1999999991 ,等于 999999984 % (109 + 7) 。

 

提示:

    1 <= orders.length <= 105
    orders[i].length == 3
    1 <= pricei, amounti <= 109
    orderTypei 为 0 或 1



解法一:优先队列模拟

利用小根堆模拟Sell BacklogSell\ BacklogSell Backlog, 大根堆模拟Buy BacklogBuy\ BacklogBuy Backlog, 遍历每个订单,从对应的堆中寻找是否能够消除,若最后订单还剩余个数,则将该个数加入对应的积压订单中即可。


遍历完所有订单,最后从两个堆中取得所有订单的数量便是答案。

  • 时间复杂度:O(nlogn)O(nlogn)O(nlogn)
  • 空间复杂度:O(n)O(n)O(n)
class Solution {
    int mod = (int)1e9 + 7;
    public int getNumberOfBacklogOrders(int[][] orders) {
        long ans = 0;
        PriorityQueue<int[]> sell = new PriorityQueue<>((a, b)-> a[0] < b[0] ? -1 : 1), buy = new PriorityQueue<>((a, b)-> a[0] < b[0] ? 1 : -1);//a[0] < b[0] ? -1 : 1默认小根堆,a[0] < b[0] ? 1 : -1 大根堆
        for (int[] o : orders) {
            if (o[2] == 0) solove(sell, buy, o, true);//从sell backlog中寻找订单
            else solove(buy, sell, o, false);//从buy backlog中寻找订单
        }
        while (!buy.isEmpty()) ans += buy.poll()[1];
        while (!sell.isEmpty()) ans += sell.poll()[1];
        return (int)(ans % mod);
    }
    void solove(PriorityQueue<int[]> q1, PriorityQueue<int[]> q2, int[] o, boolean ok) {
        while (!q1.isEmpty() && o[1] != 0 && (ok ? q1.peek()[0] <= o[0] : q1.peek()[0] >= o[0])) {//通过ok判断价格是大于等于还是小于等于
            int[] t = q1.poll(); 
            int cnt = Math.min(o[1], t[1]); //取两者中数量最少的
            o[1] -= cnt;
            t[1] -= cnt;
            if (t[1] > 0) q1.add(t); //若数量还有剩,继续放入堆中
        }
        if (o[1] > 0) q2.add(new int[]{o[0], o[1]}); //若订单还有剩,放入backlog中
    }
}
class Solution {
    int mod = 1e9 + 7;
public:
    int getNumberOfBacklogOrders(vector<vector<int>>& orders) {
        long long ans = 0;
        priority_queue<pair<int,int>> buy, sell; //通过价格取负模拟小根堆
        for (vector<int>& o : orders) {
            if (o[2] == 0) solve(sell, buy, o, true);
            else solve(buy, sell, o, false);
        }
        while (!buy.empty()) ans += buy.top().second, buy.pop();
        while (!sell.empty()) ans += sell.top().second, sell.pop();
        return (int)(ans % mod);
    }
    void solve(priority_queue<pair<int,int>>& q1, priority_queue<pair<int,int>>& q2, vector<int>& o, bool ok) {
        while (!q1.empty() && o[1] != 0 && (ok ? -q1.top().first <= o[0] : q1.top().first >= o[0])) {
            auto t = q1.top(); q1.pop();
            int cnt = min(o[1], t.second);
            o[1] -= cnt;
            t.second -= cnt;
            if (t.second > 0) q1.push(t);
        }
        if (o[1] > 0) q2.push({ok ? o[0] : -o[0], o[1]}); 
    }
}; 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值