③ ProSTformer: 用于短期交通流量预测的渐进式时空自注意力模型 (完全使用纯自注意力机制进行交通预测 | ④ 用于水路交通状态预测的半动态时空图神经网络 | 引入先验知识来改进自注意力机制

前情提要:

① TPGraph:《用于准确预测干道交通流量的时空图学习框架》 | ② DmgSTGAT《用于交通预测的动态多粒度时空图注意网络》| 多尺度时间特征融合模块 | 多粒度空间-时间相关性

③ ProSTformer

3.1 解析

1. 关键词

(1) 交通流量预测
(2) 深度学习
(3) Transformer
(4) 自注意力机制
(5) 空间-时间学习

2. 研究概述

(1) 本文的研究背景是智能城市管理和公共安全中交通流量预测的重要性及挑战性。
(2) 过去的研究方法包括基于向量格式数据的机器学习和深度学习模型,基于图格式数据和视频格式数据的深度学习模型。这些方法在处理大规模区域历史记录的输入序列时存在困难。
(3) 本文研究方法的出发点是提出一种纯自注意力方法来预测交通流量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追光者♂

谢谢你呀!一起加油!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值