前情提要:
① TPGraph:《用于准确预测干道交通流量的时空图学习框架》 | ② DmgSTGAT《用于交通预测的动态多粒度时空图注意网络》| 多尺度时间特征融合模块 | 多粒度空间-时间相关性
目录
③ ProSTformer
3.1 解析
1. 关键词
(1) 交通流量预测
(2) 深度学习
(3) Transformer
(4) 自注意力机制
(5) 空间-时间学习
2. 研究概述
(1) 本文的研究背景是智能城市管理和公共安全中交通流量预测的重要性及挑战性。
(2) 过去的研究方法包括基于向量格式数据的机器学习和深度学习模型,基于图格式数据和视频格式数据的深度学习模型。这些方法在处理大规模区域历史记录的输入序列时存在困难。
(3) 本文研究方法的出发点是提出一种纯自注意力方法来预测交通流量