1 引言
DeepFM通过FM显式引入了二阶特征交叉,提升了低阶特征交叉能力。但在推荐场景中,三阶、四阶甚至更高阶的特征交叉同样十分重要。比如在应用市场(如Google Play)推荐场景中,“年轻”的“男性”用户,对“射击类游戏App”下载率较高。此处特征组“用户年龄、用户性别、App类型”的三阶交叉,对标签“用户是否下载App”十分重要。有没有办法在模型中显式引入高阶特征交叉呢?有两种思路:
- 通过DNN深度神经网络。DNN具有高阶特征交叉能力,但交叉是隐式,而不是显式的。DNN由多层全连接网络构成,全连接本质上是对特征向量加权求和,即使堆叠多层,也很难拟合向量间的内积、外积等显式高阶操作。
- 引入更高阶的FM。FM通过内积操作,具备显式二阶特征交叉能力。那能否扩展到三阶、四阶甚至更高阶呢?理论上可行,但参数量和计算量会爆炸性提升