精通推荐算法20:特征交叉之DCN -- 异构模型Wide侧引入高阶交叉

1 引言

DeepFM通过FM显式引入了二阶特征交叉,提升了低阶特征交叉能力。但在推荐场景中,三阶、四阶甚至更高阶的特征交叉同样十分重要。比如在应用市场(如Google Play)推荐场景中,“年轻”的“男性”用户,对“射击类游戏App”下载率较高。此处特征组“用户年龄、用户性别、App类型”的三阶交叉,对标签“用户是否下载App”十分重要。有没有办法在模型中显式引入高阶特征交叉呢?有两种思路:

  1. 通过DNN深度神经网络。DNN具有高阶特征交叉能力,但交叉是隐式,而不是显式的。DNN由多层全连接网络构成,全连接本质上是对特征向量加权求和,即使堆叠多层,也很难拟合向量间的内积、外积等显式高阶操作。
  2. 引入更高阶的FM。FM通过内积操作,具备显式二阶特征交叉能力。那能否扩展到三阶、四阶甚至更高阶呢?理论上可行,但参数量和计算量会爆炸性提升
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谢杨易

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值