YARN的产生背景和架构剖析

YARN为解决Hadoop1.0中的单点故障、资源管理和任务执行耦合、低资源利用率等问题而诞生。它将资源管理和作业调度分离,支持多种计算框架如Spark、Flink。YARN采用主从架构,ResourceManager负责全局资源调度,NodeManager管理节点资源,通过Zookeeper实现高可用。YARN的资源抽象更合理,提高了资源利用率,降低了JobTracker的压力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

hadoop1存在的问题
1、单点故障,可靠性低: JobTracker采用了master/slave结构,是集群事务的集中处理点,存在单点故障
2、单点瓶颈,扩展性差: 需要完成的任务太多,JobTracker兼顾资源管理和作业控制跟踪功能跟踪任务,启动失败或者迟缓的任务,记录任务的执行状态,维护计数器,压力大,成为系统瓶颈
3、资源管理和任务执行强耦合: 在JobTracker端,用Map/Reduce Task作为资源的表示过于简单,没有考虑到CPU、内存等资源情况,当把两个需要消耗大内的Task调度到一起,很容易出现OOM。
4、资源利用率低: 基于槽位的资源分配模型,槽位是一种粗粒度的资源划分单位,通常一个任务不会用完一个槽位的资源,hadoop1把资源强制划分为Map/Reduce两种Slot,当只有maptask时,Reduce slot不能用,当只有Reduce Task时,Map Slot不能用,容易造成资源利用 不足
5、不支持多种分布式计算框架

Hadoop YARN架构演进

从Hadoop-2.x开始,Hadoop的架构发生了变化:将hadoop1的MapReduce集群一分为二 MapReduce和YARN

  • MapReduce: 仅仅只是一套用来编写分布式计算应用程序的API
  • YARN:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值