(每日一题)合唱队形———<动态规划>

1. 题⽬链接:DP16合唱队形

2. 题⽬描述:

3. 解法:

算法思路:

最⻓上升⼦序列模型。  

C++算法代码: 

#include <iostream>
#include <vector>
using namespace std;
int main()
{
    //初始化
    int n;
    cin>>n;
    vector<int>temp(n);
    for(int i=0;i<n;i++)
    {
        cin>>temp[i];
    }
    vector<int>l(n,1);  //从左往右的最长递增序列
    vector<int>r(n,1);  //从右往左的最长递增序列 —— 最长递减序列
    //填表
    for(int i=1;i<n;i++)
    {
        for(int j=0;j<i;j++)
        {
            if(temp[i]>temp[j])
            {
                l[i]=max(l[j]+1,l[i]);
            }
        }
    }
    for(int i=n-1;i>=0;i--)
    {
        for(int j=i+1;j<n;j++)
        {
            if(temp[i]>temp[j])
            {
                r[i]=max(r[j]+1,r[i]);
            }
        }
    }
    //输出
    int ret=0;  //找出最长的合法序列
    for(int i=0;i<n;i++)
    {
        ret=max(ret,l[i]+r[i]-1);
    }
    cout<<n-ret;    //输出最少的修改个数
    return 0;
}

Java算法代码:

import java.util.*;
// 注意类名必须为 Main, 不要有任何 package xxx 信息 
public class Main
{
	public static void main(String[] args)
	{
		Scanner in = new Scanner(System.in);
		int n = in.nextInt();
		int[] arr = new int[n + 1];
		for (int i = 1; i <= n; i++)
		{
			arr[i] = in.nextInt();
		}
		int[] f = new int[n + 1];
		int[] g = new int[n + 1];
		// 从左往右 
		for (int i = 1; i <= n; i++)
		{
			f[i] = 1;
			for (int j = 1; j < i; j++)
			{
				if (arr[i] > arr[j])
				{
					f[i] = Math.max(f[i], f[j] + 1);
				}
			}
		}
		// 从右往左 
		for (int i = n; i >= 1; i--)
		{
			g[i] = 1;
			for (int j = i + 1; j <= n; j++)
			{
				if (arr[i] > arr[j])
				{
					g[i] = Math.max(g[i], g[j] + 1);
				}
			}
		}
		int len = 0;
		for (int i = 1; i <= n; i++)
		{
			len = Math.max(len, f[i] + g[i] - 1);
		}
		System.out.println(n - len);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

课堂随笔

感谢支持~~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值