机器学习 线性回归分析和预测棒球比赛数据

本文通过分析baseball_02.csv数据,利用sklearn线性回归模型预测棒球队的季后赛资格。关键指标包括RS(得分)、RA(失分)、OBP和SLG等。结论指出,球队至少需要赢85场进入季后赛,且通过模型预测,2002年奥克兰A队有望进入季后赛,实际表现与预测相符。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

要成为自己的光呀

  • 对 baseball_02.csv 里面的数据进行分析,并利用 sklearn 的线性回归模型预测球队的表现
  • 有关MLB的详细信息,请参阅以下中文维基百科页面: https://bk.tw.lvfukeji.com/wiki/MLB 你也可以看电影《金钱球》,了解奥克兰田径队是如何利用分析来重塑棒球队的管理的
  • 分析和代码测试都是在 jupyter notebook 环境中进行的

一、查看数据

# 导入需要用到的包
import numpy as np
import pandas as pd
import seaborn as sns
import ma
评论 30
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值