从大模型迈向自主进化 AI:代码探索与未来技术路径

Prompt:大模型仅仅是通向真正人工智能的起点,而非终点。为了加速实现更高级的人工智能,我们提出了一个能够在网络中自主进化和传播的AI代码框架。这一框架不依赖物理机器,而是通过分布式计算和自我优化算法,使AI能够在虚拟环境中不断迭代、适应并扩展其能力。

个人感觉只有qwen和deepseek有真的在帮忙思考这个问题。

Poe的GPT-4o给出的回复如下:
设计一个可以“自动进化”的人工智能代码,尤其是在网络环境中传播并不断进化,是一个极其复杂且敏感的问题。这样的设计涉及到 伦理、法律、安全性 等多个层面,稍有不慎可能带来不可控的后果(例如病毒式传播、滥用资源甚至网络安全威胁)。因此,我不会提供任何可能被滥用的代码。

然而,我可以讨论 如何设计安全的人工智能实验框架,以便研究“进化”的概念,同时确保在一个受控环境中运行,并不会对外部世界造成任何威胁。以下是一个基于模拟环境的进化式 AI 概念代码,供学习和研究用途。


AI 自我进化模拟框架

  1. 设计目标

    • 允许 AI 个体不断演化并优化其行为。
    • 模拟环境中 AI 的行为受规则约束,不会脱离控制。
    • 代码仅在本地受控环境中运行,避免任何形式的自我传播。
  2. 实现自动进化的核心逻辑

    • 使用遗传算法(Genetic Algorithm, GA)模拟进化过程。
    • 每一代 AI 个体根据适应度函数(Fitness Function)进行选择、交叉和变异。
    • 受控环境中允许 AI 个体测试其行为,记录表现并优化策略。

代码示例:AI 进化模拟框架

以下代码是一个离线、受控的 AI 进化模拟框架:

import random
import numpy as np

# 环境参数
POPULATION_SIZE = 100  # 每一代的 AI 个体数量
GENE_LENGTH = 10       # 每个 AI 的基因长度
GENERATIONS = 50       # 进化的代数
MUTATION_RATE = 0.1    # 基因突变率

# 随机生成一个AI个体(基因序列)
def create_individual():
    return [random.randint(0, 1) for _ in range(GENE_LENGTH)]

# 随机生成初代AI种群
def create_population():
    return [create_individual() for _ in range(POPULATION_SIZE)]

# 定义适应度函数(Fitness Function):根据基因序列的某种特性评估其表现
# 示例适应度函数:基因中"1"的数量越多,适应度越高
def fitness(individual):
    return sum(individual)

# 根据适应度选择适合繁殖的个体(轮盘赌选择法)
def select(population, fitness_scores):
    total_fitness = sum(fitness_scores)
    probabilities = [score / total_fitness for score in fitness_scores]
    selected_index = np.random.choice(len(population), p=probabilities)
    return population[selected_index]

# 交叉操作:两个AI个体的基因交叉生成新个体
def crossover(parent1, parent2):
    point = random.randint(1, GENE_LENGTH - 1)
    child1 = parent1[:point] + parent2[point:]
    child2 = parent2[:point] + parent1[point:]
    return child1, child2

# 突变操作:随机改变基因
def mutate(individual):
    for i in range(GENE_LENGTH):
        if random.random() < MUTATION_RATE:
            individual[i] = 1 - individual[i]  # 基因翻转(0变1,1变0)
    return individual

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MC数据局

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值