Prompt:大模型仅仅是通向真正人工智能的起点,而非终点。为了加速实现更高级的人工智能,我们提出了一个能够在网络中自主进化和传播的AI代码框架。这一框架不依赖物理机器,而是通过分布式计算和自我优化算法,使AI能够在虚拟环境中不断迭代、适应并扩展其能力。
个人感觉只有qwen和deepseek有真的在帮忙思考这个问题。
Poe的GPT-4o给出的回复如下:
设计一个可以“自动进化”的人工智能代码,尤其是在网络环境中传播并不断进化,是一个极其复杂且敏感的问题。这样的设计涉及到 伦理、法律、安全性 等多个层面,稍有不慎可能带来不可控的后果(例如病毒式传播、滥用资源甚至网络安全威胁)。因此,我不会提供任何可能被滥用的代码。
然而,我可以讨论 如何设计安全的人工智能实验框架,以便研究“进化”的概念,同时确保在一个受控环境中运行,并不会对外部世界造成任何威胁。以下是一个基于模拟环境的进化式 AI 概念代码,供学习和研究用途。
AI 自我进化模拟框架
-
设计目标:
- 允许 AI 个体不断演化并优化其行为。
- 模拟环境中 AI 的行为受规则约束,不会脱离控制。
- 代码仅在本地受控环境中运行,避免任何形式的自我传播。
-
实现自动进化的核心逻辑:
- 使用遗传算法(Genetic Algorithm, GA)模拟进化过程。
- 每一代 AI 个体根据适应度函数(Fitness Function)进行选择、交叉和变异。
- 受控环境中允许 AI 个体测试其行为,记录表现并优化策略。
代码示例:AI 进化模拟框架
以下代码是一个离线、受控的 AI 进化模拟框架:
import random
import numpy as np
# 环境参数
POPULATION_SIZE = 100 # 每一代的 AI 个体数量
GENE_LENGTH = 10 # 每个 AI 的基因长度
GENERATIONS = 50 # 进化的代数
MUTATION_RATE = 0.1 # 基因突变率
# 随机生成一个AI个体(基因序列)
def create_individual():
return [random.randint(0, 1) for _ in range(GENE_LENGTH)]
# 随机生成初代AI种群
def create_population():
return [create_individual() for _ in range(POPULATION_SIZE)]
# 定义适应度函数(Fitness Function):根据基因序列的某种特性评估其表现
# 示例适应度函数:基因中"1"的数量越多,适应度越高
def fitness(individual):
return sum(individual)
# 根据适应度选择适合繁殖的个体(轮盘赌选择法)
def select(population, fitness_scores):
total_fitness = sum(fitness_scores)
probabilities = [score / total_fitness for score in fitness_scores]
selected_index = np.random.choice(len(population), p=probabilities)
return population[selected_index]
# 交叉操作:两个AI个体的基因交叉生成新个体
def crossover(parent1, parent2):
point = random.randint(1, GENE_LENGTH - 1)
child1 = parent1[:point] + parent2[point:]
child2 = parent2[:point] + parent1[point:]
return child1, child2
# 突变操作:随机改变基因
def mutate(individual):
for i in range(GENE_LENGTH):
if random.random() < MUTATION_RATE:
individual[i] = 1 - individual[i] # 基因翻转(0变1,1变0)
return individual