RAG(Retrieval-Augmented Generation)详解
RAG(检索增强生成) 是一种结合了信息检索(Retrieval)和文本生成(Generation)的技术,旨在通过引入外部知识库提升生成内容的准确性和可靠性。它特别适用于需要依赖外部知识的任务(如问答、事实核查等),有效减少生成模型的“幻觉”问题。
RAG 的核心流程
RAG 分为三个阶段:检索(Retrieve)→ 增强(Augment)→ 生成(Generate)。
1. 检索(Retrieval)
- 目标:从外部知识库中检索与输入问题相关的文档片段。
- 实现方法:
- 将用户查询(Query)编码为向量(例如使用预训练模型如BERT、Sentence-BERT)。
- 在向量数据库中搜索与查询向量最相似的文档片段(如使用FAISS、Annoy等工具)。
- 关键点:检索的质量直接影响后续生成结果。
2. 增强(Augmentation)
- 目标:将检索到的文档与原始输入结合,形成增强后的上下文。
- 实现方法:
- 将用户查询和检索到的文档片段拼接,作为生成模型的输入。
- 示例输入格式:
问题: {query} 相关文档: {doc1} {doc2} ...
3. 生成(Generation)
- 目标:基于增强后的上下文生成最终答案。
- 实现方法:
- 使用生成模型(如BART、T5、GPT)处理增强后的输入,输出自然语言回答。
- 模型需要同时理解问题和检索到的知识。
RAG 的典型示例
场景:回答历史问题
用户提问:
“谁发明了电灯泡?”
RAG 处理过程:
-
检索阶段:
- 将问题编码为向量,从知识库中检索相关文档:
文档1:托马斯·爱迪生在1879年改进了电灯泡的设计,并获得了专利。 文档2:约瑟夫·斯旺早在1860年就展示了电灯泡原型,但未申请专利。
- 将问题编码为向量,从知识库中检索相关文档:
-
增强阶段:
- 拼接查询和检索结果:
问题:谁发明了电灯泡? 相关文档:托马斯·爱迪生在1879年改进了电灯泡的设计,并获得了专利。约瑟夫·斯旺早在1860年就展示了电灯泡原型。
- 拼接查询和检索结果:
-
生成阶段:
- 生成模型输出:
电灯泡的发明涉及多位贡献者。托马斯·爱迪生在1879年改进了设计并申请了专利,使其商业化。但约瑟夫·斯旺在1860年已展示早期原型。
- 生成模型输出:
RAG 的代码实现(简化版)
使用 Hugging Face
库实现一个简单RAG流程:
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
import torch
# 初始化模型和组件
model_name = "facebook/rag-sequence-nq" # 基于Natural Questions的预训练RAG模型
tokenizer = RagTokenizer.from_pretrained(model_name)
retriever = RagRetriever.from_pretrained(model_name, index_name="exact")
model = RagSequenceForGeneration.from_pretrained(model_name, retriever=retriever)
# 用户输入
query = "谁发明了电灯泡?"
inputs = tokenizer(query, return_tensors="pt")
# 生成答案
outputs = model.generate(inputs["input_ids"])
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(answer) # 输出:托马斯·爱迪生在1879年改进了电灯泡设计,但约瑟夫·斯旺更早展示了原型。
RAG 的优势
- 减少幻觉:基于检索到的真实信息生成,避免编造事实。
- 动态知识更新:无需重新训练模型,只需更新知识库。
- 可解释性:生成结果可追溯至检索到的文档。
应用场景
- 开放域问答(如智能客服)
- 文档摘要(结合多篇文档生成总结)
- 对话系统(提供更准确的回复)
挑战
- 检索效率与精度平衡。
- 处理长文档的上下文整合。
- 知识库的覆盖范围和质量。
通过结合检索与生成,RAG 在需要外部知识的任务中表现优异,是当前生成式AI的重要技术方向。