【零基础】基于DeepSeek-R1与Qwen2.5Max的行业洞察自动化平台

自动生成行业报告,通过调用两个不同的大模型(DeepSeek 和 Qwen),完成从行业趋势分析结构化报告生成的全过程。


完整代码:https://mp.weixin.qq.com/s/6pHi_aIDBcJKw1U61n1uUg
在这里插入图片描述

🧠 1. 整体目的与功能

该脚本实现了一个名为 ReportGenerator 的类,用于:

  • 调用 DeepSeek 大模型 分析某个行业(如能源、科技)的市场趋势;
  • 调用 Qwen 大模型 生成报告内容,包括:
    • 执行摘要(Executive Summary)
    • 市场分析(Market Analysis)
    • 战略建议(Recommendations)

最终生成完整的行业报告并输出。


⚙️ 2. 实现原理与流程

(1)初始化模型客户端

client = OpenAI(api_key=DEEPSEEK_API_KEY, base_url=DEEPSEEK_ENDPOINT)
qwen_client = OpenAI(api_key=QWEN_API_KEY, base_url=QWEN_ENDPOINT)

使用 OpenAI 兼容客户端分别初始化 DeepSeekQwen 的 API 访问接口。


(2)行业趋势分析 —— DeepSeek 模型

completion = client.chat.completions.create(...)

调用 DeepSeek 的 deepseek-r1-250120 模型来分析行业趋势。它的职责是:

  • 汇总市场数据
  • 分析规模和增长率
  • 提取关键参与者

返回结构为:

{
   
  "summary": "...分析内容...",
  "model": "deepseek-r1-250120",
  "source": "deepseek"
}

(3)报告撰写 —— Qwen 模型

completion = qwen_client.chat.completions.create(...)

将 DeepSeek 分析结果作为输入,调用 Qwen 的 qwen-plus 模型生成:

  • 简明执行摘要
  • 详细市场分析
  • 战略建议(3~5条)

使用提示模板(prompt)引导其风格、结构和语言逻辑。


🔍 3. 两个模型的差异与特色

对比项 DeepSeek 模型 Qwen 模型
使用场景 信息抽取与市场趋势分析 报告生成与语言润色
模型名称 deepseek-r1-250120 qwen-plus
输出风格 结构化总结,强调数据洞察 语言自然、篇章连贯,适合撰写文稿
角色 分析师(分析数据) 写手(撰写内容)
优势 在产业信息理解、趋势洞察方面更强 在语言组织、报告写作方面更自然流畅
调用位置 analyze_industry_trends() generate_report_section()

组合使用的逻辑如下:

让 DeepSeek 负责想清楚,要写什么;让 Qwen 负责写好它。


🔁 4. 运行过程总结

  1. generate_full_report("energy") 被调用;
  2. DeepSeek 分析 energy 行业,返回结构化趋势总结;
  3. 将该总结作为输入,分别用 Qwen 生成三段报告内容;
  4. 最终组合成完整报告(包含三大板块);
  5. 输出 JSON 结构的报告。

✅ 5. 优势与应用场景

  • 自动化行业研究:适合咨询公司、投资机构、市场部等使用;
  • 多模型协作:体现大模型之间功能分工与协同;
  • 模块化结构清晰:便于扩展为 GUI、Web 服务、批量分析工具等。

主要代码如下

import os
import json
from typing import Dict, Optional
import requests
from openai import OpenAI

# ⚠️ 从环境变量中读取 API Key,部署时请确保配置,此处隐去

# 初始化 DeepSeek 客户端
client = OpenAI(
   
### 比较DeepSeek-VL2Qwen2.5的特点性能 #### 特点对比 对于多模态处理能力而言,DeepSeek-VL2专注于视觉-语言理解任务,能够解析复杂的图像内容并将其自然语言相结合以提供更深入的理解[^1]。而Qwen2.5同样具备强大的跨模态交互功能,不仅限于静态图片分析,还支持动态视频片段解读以及音频输入。 在架构设计方面,DeepSeek-VL2采用了先进的Transformer变体结构来增强特征提取效率;相比之下,Qwen2.5则引入了更多创新机制如自适应注意力模块等特性,旨在进一步提升模型灵活性及泛化能力。 #### 性能表现 就具体应用场景下的实际效果来看: - **准确性**:两者均展示了优秀的识别精度,但在特定领域内可能存在差异。例如,在医疗影像诊断辅助场景下,经过专门训练后的DeepSeek-VL2可能表现出更高的特异性;而在通用物体检测任务中,Qwen2.5或许凭借其广泛的预训练数据集获得更好的成绩。 - **响应速度**:由于各自优化策略的不同,两者的推理时间也有所区别。通常情况下,针对轻量化部署进行了特别调整的版本可能会拥有更快的速度优势——比如用于移动设备上的简化版DeepSeek-VL2或是云端服务端运行时高度并行化的Qwen2.5实例。 - **资源消耗**:考虑到计算成本时效性的平衡,不同硬件平台上的资源配置需求各异。某些高性能GPU集群更适合执行复杂运算密集型工作的Qwen2.5大型网络参数配置;而对于边缘计算环境,则倾向于选择占用内存较小且能耗更低廉的定制化DeepSeek-VL2方案。 ```python import time def compare_performance(model_a, model_b): start_time = time.time() result_a = model_a.predict() # 假设这是预测函数 end_time_a = time.time() result_b = model_b.predict() # 同样假设这是另一个模型的预测函数 end_time_b = time.time() print(f"Model A took {end_time_a - start_time} seconds.") print(f"Model B took {end_time_b - end_time_a} seconds.") # 这里仅作为示意代码,并未真正实现两个模型的具体逻辑 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MC数据局

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值