自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

宅男很神经

宅男很神经

  • 博客(1254)
  • 收藏
  • 关注

原创 【强化学习】01

强化学习(Reinforcement Learning, RL)是一种机器学习范式,它关注智能体(Agent)如何在特定环境(Environment)中通过与环境的交互来学习如何做出决策,以最大化某种累积奖励。与监督学习和无监督学习不同,强化学习不依赖于预先标注好的数据集,而是通过“试错”的方式进行学习。在传统的机器学习领域,监督学习需要大量的带有正确标签的数据来训练模型,例如图像分类、语音识别等。无监督学习则在没有标签的数据中寻找模式和结构,例如聚类、降维等。强化学习则完全不同,它没有明确的“正确答案”或

2025-07-16 10:17:39 734

原创 【Python】gensim

在本章中,我们将从最基础、最核心的构成元素开始,深入剖析其内部机制。理解这些底层概念是精通,乃至整个自然语言处理(NLP)领域,不可或缺的第一步。我们将详细探讨语料库(Corpora)、字典(Dictionaries)以及它们在内存中的表示、优化策略,以及如何高效地处理大规模文本数据。在中,语料库不仅仅是文本文件的集合,它是一种高度抽象和优化的数据结构,旨在高效地存储、访问和处理大规模文档集合。的语料库设计遵循“流式处理”的原则,这意味着它通常不会将整个语料库加载到内存中,而是通过迭代器(iterator)

2025-07-10 13:39:11 990

原创 【Python】深度学习3

注意力机制允许模型在生成输出序列的每一步时,都能够“回顾”输入序列的所有部分,并根据当前的需求,为每个部分分配一个“注意力权重”。例如,在理解 “it” 的指代时,一个注意力“头”可能关注于语法上的主谓关系,而我们可能还希望有其他的“头”能关注语义上的关联,或是其他更微妙的模式。Transformer 的成功在于其对这些组件的巧妙组合,特别是完全依赖注意力机制,摆脱了RNN的顺序计算瓶颈,从而在现代并行硬件上实现了前所未有的训练速度和模型规模。我们之前实现的 Dropout 层可能针对的是特定形状的数据。

2025-07-10 13:16:05 652

原创 【Python】深度学习2

在深度神经网络中,尤其是在训练深层模型时,一个普遍且棘手的问题是“内部协变量漂移”(Internal Covariate Shift, ICS)。协变量漂移通常指的是训练集和测试集数据分布不一致的问题。而在深度网络中,这个概念被推广到网络内部:在训练过程中,由于前一层参数的不断更新,导致其输出(即后一层的输入)的分布在不断地发生变化。想象一下一个多层神经网络,每一层都会对输入进行线性变换和非线性激活。当前一层参数更新后,它的输出分布就会改变。这意味着作为下一层的输入,其分布也随之改变。对于后续层来说,它们需

2025-07-10 12:58:18 991

原创 【Python】深度学习

深度学习的实现高度依赖于强大的编程工具和高效的数值计算库。Python以其简洁的语法、丰富的库生态系统,成为了深度学习领域无可争议的“通用语言”。而NumPy,作为Python科学计算的核心库,为处理多维数组(张量)提供了极其高效的方法,是所有深度学习框架(如TensorFlow、PyTorch)底层运算的基石。在深入深度学习之前,我们需要确保对Python语言的基本构造有扎实的理解。这里我们将聚焦于那些在数据处理和模型构建中频繁使用的概念。Python是动态类型语言,这意味着您无需提前声明变量的类型,Py

2025-07-10 12:39:13 360

原创 【Python】asyncio

在本章中,我们将深入探究Python生成器的最底层机制。我们将从迭代器协议的本质出发,逐步揭示关键字的魔力,以及它如何将一个普通函数转化为拥有暂停与恢复能力的生成器。此外,我们还将覆盖生成器表达式的简洁性与效率,并详细剖析生成器高级控制方法,如、和,理解它们在构建复杂控制流中的关键作用。在Python中,迭代是一个核心概念。它允许我们遍历集合中的元素,无论是列表、元组、字符串还是其他更复杂的数据结构。实现这种遍历行为的背后,是Python的迭代协议(Iteration Protocol)。理解这个协议是理解

2025-07-10 12:15:41 427

原创 【Python】Pandas2

时间序列数据是数据分析领域中极其重要的一种数据类型,它涉及到按时间顺序排列的观测值。从金融市场的股票价格、气象站的温度记录,到网站的用户访问量、设备的传感器读数,时间序列无处不在。Pandas对时间序列数据提供了无与伦比的支持,其核心是以及一系列高效且灵活的时间操作功能,如重采样、移动窗口、日期偏移和时区处理。本章将从最底层的构造开始,全面深入地解析Pandas处理时间序列数据的精髓。是Pandas专门为时间序列数据设计的索引类型。它是一个包含日期时间戳的特殊对象,能够高效地支持时间相关的操作,如切片、频率

2025-07-10 11:37:24 432

原创 【Python】Pandas

Pandas库的核心基石是其数据结构,其中作为一维带标签数组,是理解更复杂的基础。本章将从最底层的结构出发,对其内部机制、创建方式、属性、索引、数据类型、操作行为及内存占用进行极其详尽的剖析。可以被理解为一种增强版的NumPy一维数组。它在NumPy数组的基础上,引入了“索引”(Index)的概念,为每个数据点赋予了一个标签,从而使得数据访问和操作更加直观和强大。内部组成:一个对象实际上由两个主要部分构成:数据对齐原理:Pandas 最核心的设计理念之一是“数据对齐”。当进行两个或多个之间的运算时,Pand

2025-07-10 11:09:15 1030

原创 【Python】 importlib 动态加载

在深入探究Python的模块之前,我们必须首先对Python中最基础也是最核心的模块导入机制——语句——有一个极其深刻的理解。的强大之处,正是建立在对Python现有导入系统内部运作机制的抽象、封装和扩展之上。本章将从零开始,剖析语句从被解析到模块完全可用的整个生命周期,揭示其背后的关键组件,为后续理解打下最坚实的基础。Python的模块化设计是其成功的基石之一。模块化允许开发者将大型程序分解为更小、更易管理、可重用的独立单元。每个文件通常被视为一个模块。这种设计带来了诸多益处:Python的模块导入机制,

2025-07-10 10:51:36 599

原创 【Python】 Neo4j

在深入探讨如何使用Python与Neo4j进行交互之前,我们必须首先从最底层、最根本的角度理解为什么需要图数据库,以及它解决了哪些传统数据模型难以应对的问题。这不仅是技术选择的考量,更是思维模式的转变。关系型数据库(Relational Databases, RDBs)以其严谨的表结构、事务(ACID)特性以及强大的SQL查询语言,在过去的几十年里一直是数据存储和管理的主流。然而,当数据模型中的实体关系变得复杂且层级加深时,关系型数据库固有的设计范式便开始显现其局限性,尤其是在处理“关系”本身时。关系型数据

2025-07-10 10:32:05 672

原创 【Python】内存泄漏3

预防策略:避免让守护线程管理关键资源:如果一个线程负责打开文件、网络连接或分配大内存块,并期望在任务结束后进行清理,那么它不应该被设置为守护线程。非守护线程会阻止程序退出,直到它们自身完成或被显式停止,从而给予它们执行清理逻辑的机会。显式清理与资源管理:无论线程类型如何,对于需要显式关闭的资源(如文件、数据库连接、自定义内存块),始终使用上下文管理器( 语句)或在 块中确保清理代码被执行。对于无法使用 语句包装的复杂资源,提供一个 或 方法,并在线程逻辑的末尾显式调用它。使用 或其他信号机制:如果

2025-07-10 10:07:36 1029

原创 【Python】内存泄漏2

好的,我们继续深入Python内存泄漏的预防策略。解析与思考:在上述 示例中, 实例 在 函数内部创建,作为局部变量。一旦 函数执行完毕, 就不再有任何可达的引用,其引用计数会降为零,并立即被引用计数机制回收。即使不手动调用 ,这些对象也会在函数返回后迅速被标记为可回收。通过观察 的变化,我们可以看到内存占用在每次函数调用结束后恢复到接近初始状态,这正是局部变量有效管理内存的体现。与局部变量不同,全局变量的生命周期与程序的生命周期相同。一旦一个对象被全局变量引用,它将一直存在于内存中,直到程序

2025-07-10 10:07:21 392

原创 【Python】Python内存泄漏

本章将带您深入Python解释器(特别是CPython)的内存管理核心,从最基础的对象模型和内存布局开始,逐步向上剖析引用计数、垃圾回收两大支柱,并揭示它们在处理内存时的精妙之处与潜在陷阱。理解这些底层机制是识别、诊断并最终避免内存泄漏的基石。Python的内存管理哲学根植于其独特且强大的对象模型。在Python中,"一切皆对象"不仅仅是一句口号,它更是指导内存分配、引用管理和垃圾回收的根本原则。在Python的世界里,无论是数字、字符串、列表、字典,甚至是函数、类、模块,它们在内存中都以统一的“对象”形式

2025-07-10 10:07:09 911

原创 【Python】Hydra

在复杂的软件开发,尤其是在机器学习、数据科学以及大型应用项目中,配置管理是一个长期存在的痛点。传统的配置方式,如硬编码常量、命令行参数解析器()、简单的Python字典或JSON/INI文件,在项目规模扩大、配置项增多、实验迭代频繁时,会迅速暴露出诸多弊端:Hydra框架正是为了解决这些核心痛点而诞生。它不仅仅是一个配置加载器,更是一个强大的、声明式的配置管理系统,旨在提供一种结构化、可组合、可复现且易于实验追踪的解决方案。其核心理念是通过结构化的YAML文件定义配置,并通过命令行进行灵活的覆盖和组合,同时

2025-07-10 10:06:53 700

原创 【Python】 ETL

在ETL(Extract, Transform, Load)流程中,提取(Extraction)是第一步,其核心在于从各种数据源中获取原始数据。本章将聚焦于“文本文件”的提取,因为文本文件是数据交换中最常见且最基础的形式之一。我们将从最底层的操作系统文件I/O原理出发,逐步深入到Python中高效、鲁棒地处理各种文本文件格式的方法,并剖析其内部机制。要精通文本文件提取,首先需要理解文件在操作系统层面的本质以及Python如何与这些底层机制交互。文件并非魔法,它是一段存储在持久化介质(如硬盘、SSD)上的二进

2025-07-10 10:06:37 903

原创 【Python】Python+Ray

计算的本质是物理过程。我们今天所使用的所有数字计算机,其最底层的运算单元都是基于半导体(通常是硅)制造的晶体管。晶体管通过控制电流的“开”与“关”来表示二进制的“1”和“0”,这是构建一切复杂逻辑运算的基础。数十年来,计算机性能的飞速提升,其核心驱动力源于一个被称为“摩尔定律”的行业观察:集成电路上可容纳的晶体管数量,约每隔18至24个月便会增加一倍。更多的晶体管意味着更强的计算能力、更大的存储容量或更丰富的功能。为了在有限的芯片面积上塞入更多晶体管,工程师必须不断地缩小单个晶体管的尺寸,这个过程被称为“制

2025-07-10 10:06:16 739

原创 【Python】OpenCV影像处理2

在掌握了视频的读取、显示、储存以及高效管道构建后,我们接下来将深入探索如何从视频帧中提取更有意义的信息,以及对视频帧进行更复杂的几何变换。这不仅仅是对单个图像的处理,更是对连续动态序列的理解与操作,是通向智能视频分析的关键一步。视频中的每个帧都是一张图像,因此图像的几何变换技术也同样适用于视频帧。但当应用于视频时,这些变换通常需要考虑跨帧的一致性和连续性。图像的几何变换是改变图像中像素空间位置的操作。其中,仿射变换和透视变换是最常用且功能强大的两种。它们通过矩阵乘法来实现像素坐标的映射。6.1.1.1 仿射

2025-07-10 10:06:03 970

原创 【AI智能体】Dify2

信息茧房/泛化性不足 (Information Silos / Lack of Specificity):缺乏溯源能力 (Lack of Attribution/Traceability):上下文窗口限制 (Context Window Limitations):推理能力不足 (Limited Reasoning Capability):总结而言,RAG技术通过以下核心机制,系统性地克服了LLM的这些固有缺陷:3.3.1.2 RAG的整体架构与信息流RAG系统通常由两大核心阶段组成:检索(Retrieval

2025-07-10 10:05:47 1156

原创 【AI智能体】Dify

第一章:AI智能体基础与Dify核心理念深度解析1.1 人工智能发展脉络与智能体演进人工智能(AI)的旅程是一部波澜壮阔的技术史诗,它从最初的符号逻辑推演,历经连接主义的崛起,直至今日由大型语言模型(LLM)驱动的智能体浪潮。理解这一发展脉络,对于我们深入掌握Dify这类AI应用开发平台的核心价值至关重要。1.1.1 从符号AI到连接主义的范式转换早期的AI研究,即所谓的符号主义AI(Symbolic AI),其核心理念是将人类智能视为对符号的操纵。这个范式认为,智能行为可以通过一系列预先定义的规则、逻辑推

2025-07-10 10:05:30 948

原创 【强化学习】马尔可夫决策过程

在强化学习的宏伟蓝图中,马尔可夫决策过程(Markov Decision Process, MDP)是其最根本、最核心的数学框架。理解 MDP,就如同掌握了强化学习的通用语言,它是构建智能体与环境交互模型的基础。我们将从其最底层的逻辑出发,向上层层剖析。在深入 MDP 之前,我们必须首先理解“马尔可夫性”。这是一个概率论中的核心概念,对于理解状态的演化至关重要。什么是马尔可夫性?马尔可夫性指的是一个随机过程在给定当前状态时,其未来状态的条件概率分布只依赖于当前状态,而与过去状态无关。简单来说,就是“未来只取

2025-07-10 10:05:09 625

原创 【强化学习】蒙特卡洛方法

这是为了确保每个样本的回报 (G_t) 是独立的。如果一个状态在同一幕中多次出现,且每次出现都用来计算回报并更新,那么这些回报样本可能不是完全独立的,因为它们共享了同一条轨迹的后续部分。虽然从理论上讲,每次访问MC在某些情况下也收敛,但首次访问MC在概念上更直接地对应于贝尔曼期望方程中的期望定义,即从一个状态“开始”时的期望回报。

2025-07-10 10:04:53 707

原创 【Python】OpenCV 影像处理

视频,在计算机的世界里,并非连续的光流,而是一系列离散的图像帧在时间轴上的高速播放。理解这一点,是掌握视频处理的基础。OpenCV提供了一套强大的API来抽象这些复杂的底层细节,但作为精通者,我们需要深入其内部机制。在讨论视频之前,我们必须先理解构成视频的最小单位——像素。一个像素不仅仅是一个点,它承载着色彩信息。每个像素的颜色强度通常通过数字来表示。例如,在常见的8位图像中,每个颜色通道(如红色、绿色、蓝色)的强度值范围是从0到255。这意味着每个通道有256种可能的强度级别。我们可以通过简单的数学计算来

2025-07-09 16:43:23 1052

原创 【PyTorch】常用深度学习

深度学习的核心在于构建和训练神经网络,而模块正是PyTorch中支撑这一过程的基石。它提供了构建神经网络所需的所有核心组件,从最基本的线性变换到复杂的卷积、循环层,再到各种激活函数和损失函数。本章将从最底层开始,深入剖析的设计哲学、核心组件的内部机制,以及如何运用最基础的线性层和激活函数构建功能强大的网络。在PyTorch中,几乎所有的神经网络模块(如层、模型等)都是从这个基类派生出来的。理解是精通PyTorch神经网络的关键。它不仅仅是一个简单的Python类,更是一个精心设计的框架,用于封装神经网络的结

2025-07-09 16:12:13 606

原创 【Python】NLP入门3

在Siamese网络中,两个文本是独立编码的,然后在嵌入空间中进行比较。这种方法在召回阶段(Retrieval)非常高效,因为可以预先计算所有文档的嵌入,然后进行快速的向量检索。然而,这种“编码-再比较”的方式可能无法捕捉文本之间更深层次、更细粒度的交互信息。**交叉编码器(Cross-Encoder)**应运而生,它通过在模型内部直接建模两个文本的交互,从而实现更精确的语义匹配。最典型的实现是基于预训练Transformer模型(如BERT)的交叉编码器。核心思想:架构细节(以BERT为例):优点:缺点:

2025-07-09 15:52:20 668

原创 【Python】NLP入门2

在第三章中,我们详细探讨了中文分词这一基石任务,从词语的分布式表示到基于深度学习的序列标注模型,揭示了如何将连续的汉字流切分成有意义的词语单元。然而,仅仅切分出词语是不够的。在许多实际应用中,我们不仅需要知道文本中有哪些词,更需要识别出其中具有特定意义的“实体”,并确定它们的类别,例如人名、地名、组织机构名、时间等。这就是**命名实体识别(Named Entity Recognition, NER)**所解决的核心问题。NER是信息抽取(Information Extraction)、知识图谱构建、问答系统

2025-07-09 15:33:31 717

原创 【Python】NLP入门

中文自然语言处理(NLP)与西方语言(如英语)的NLP在基础层面就存在显著差异。这些差异源于汉语言自身的独特结构和表达方式,它们既带来了计算上的挑战,也蕴藏着独特的机遇。理解这些特性是构建高效中文NLP系统的第一步。这是中文与大多数西方语言最核心的区别。在英语中,单词之间通常用空格自然分隔,例如 “I love Python”。计算机可以直接根据空格将句子划分为一个个独立的单词。然而,在中文中,句子通常是由连续的汉字序列构成,字与字之间没有显式的分隔符来指示词的边界。例如,句子 “上海东方明珠广播电视塔很高

2025-07-09 15:19:29 955

原创 【Python】张量运算3

深度学习模型的本质是对张量数据进行一系列连续的变换。每一个神经网络层,无论是简单的线性层还是复杂的卷积层或循环层,都在其内部执行着特定的张量操作,从而将输入张量转换为输出张量。理解这些层如何处理张量的形状、维度、以及内部数据流,是构建、调试和优化任何深度学习模型的基石。本章将深入剖析 PyTorch 中各类核心神经网络层,揭示它们对张量的内在操作机制和由此带来的形状动态变化。线性层,也称为全连接层或密集层,是神经网络中最基础的组件之一。它执行的是输入张量与权重矩阵的矩阵乘法,并加上一个偏置向量。这个过程可以

2025-07-09 15:00:02 698

原创 【Python】张量计算2

张量作为 PyTorch 的基本数据结构,其在计算机内存中的表示和管理方式直接决定了计算的效率。一个深度学习模型的训练速度和内存占用,很大程度上取决于对张量内存管理的精细控制。本章将揭示张量存储的底层秘密,深入剖析内存连续性、内存分配机制,并提供优化内存使用和加速计算的实用技巧。在 PyTorch 中,一个 对象并不直接包含实际的数据值,它只是一个指向底层内存块的“视图”或“描述符”。实际的数据值存储在 对象中。7.1.1 的深层理解7.1.2 的威力与危险示例:使用 实现对角线视图 (不推荐在

2025-07-09 14:36:56 683

原创 【Python】张量运算

PyTorch 的核心是张量 (Tensor),它是一个多维数组,与 NumPy 的 类似,但具有在 GPU 上运行和自动求导的能力。理解张量的创建和初始化机制是掌握 PyTorch 的基石。我们将从最底层开始,逐步向上,深入探索 PyTorch 张量在内存中的表示、数据类型、设备管理以及各种高级初始化方法。在底层,PyTorch 张量是对一块连续或非连续内存区域的抽象。一个张量不仅仅包含其数据值,还包含描述其结构的元数据。理解这些元数据对于优化内存使用和避免常见错误至关重要。1.1.1 核心元数据:、、

2025-07-09 13:55:50 957

原创 【Python】AI机器人7

以下是一个简化且原创的Python代码示例,演示一个概念性的路径规划器(使用RRT-like的随机采样思想)和一个简单的PD控制器来模拟机器人沿着路径移动。请注意,这只是一个非常简化的概念模型,不涉及复杂的碰撞检测或多关节机器人。代码解释:机器人运动规划与控制在AI机器人中的应用展望:面临的挑战:总的来说,运动规划与控制是具身AI机器人实现其物理形态智能化的关键,是连接“大脑”决策与“身体”行动的桥梁。随着计算能力、传感器技术和控制算法的不断进步,AI机器人在复杂物理任务中的表现将持续提升。除了物理行动,

2025-07-09 13:07:08 922

原创 【Python】AI机器人6

健康推荐的Python代码示例:一个简单的健康KG和路径推荐这个示例将构建一个简化的健康知识图谱,并演示如何基于用户输入(症状)进行简单的疾病-治疗路径推荐。代码解释:通过这种方式,AI机器人可以接收用户的症状描述(例如“我最近失眠”),然后利用知识图谱进行多跳推理,找到潜在的病因(如果已知 导致 ),或直接推荐缓解失眠的 或 (例如 )。这种推理能力使得AI机器人能够提供更加智能和个性化的健康建议,而不仅仅是简单的关键词匹配。2.7.4.3 可解释性与透明度 (Explainability and

2025-07-09 12:54:18 766

原创 【Python】AI机器人5

现在,我们将把之前构建的各个组件(词嵌入、位置编码、多头注意力、编码器层、解码器层)组合起来,形成一个完整的Transformer模型。这个模型将是一个Seq2Seq架构,适用于从一个序列生成另一个序列的任务,例如我们的AI机器人中的健康问题到建议生成。Transformer模型架构概览:整个Transformer模型由以下主要部分组成:输入(Input):词嵌入层(Embedding Layer):位置编码层(Positional Encoding Layer):编码器(Encoder):解码器(Deco

2025-07-09 12:43:14 622

原创 【Python】AI机器人4

在前面章节中,我们深入探讨了 AI 机器人如何通过文本分类(情感分析、意图识别)、信息抽取(命名实体识别、关系抽取、事件抽取)和深层语义分析(语义角色标注、抽象意义表示、共指消解)来理解用户的语言。这些技术共同构成了机器人“听懂”和“看懂”用户输入的基础。然而,一个真正的智能 AI 机器人,特别是在健康推荐和情感洞察领域,不仅要理解,更要能够“回答”问题。当用户提问“布洛芬的副作用是什么?”或“焦虑症有哪些缓解方法?”时,机器人需要能够从海量的知识中找到准确、相关的答案。这就是问答系统(Question A

2025-07-09 12:26:24 1032

原创 【Python】AI机器人3

传统的文本分类通常假定每个文档只属于一个类别(即单标签分类)。然而,在复杂的AI机器人应用中,一个用户输入或一段对话可能同时表达多种意图或包含多种情感。例如,用户说“请帮我订一张机票,顺便查一下天气”,这显然包含了“预订机票”和“查询天气”两个独立的意图。又如,“我虽然对产品功能满意,但对客服的态度非常不满”这句话,同时表达了“积极”(对功能)和“消极”(对客服)两种情感。这种一个样本可以属于多个类别的任务,就是多标签文本分类(Multi-label Text Classification)。此外,AI机器

2025-07-09 12:03:38 689

原创 【Python】AI机器人2

自然语言处理(NLP)是人工智能领域的一个重要分支,它赋予了计算机理解、解释、生成和操纵人类语言的能力。对于会聊天的AI机器人而言,NLP是其理解用户意图、分析用户情绪、生成自然回复以及从海量文本中提取知识的核心。在本章中,我们将从最基础的文本预处理开始,层层深入,剖析各种NLP核心技术,揭示它们如何让AI机器人能够“听懂”人类的语言。原始的用户输入文本通常是“脏乱”的:可能包含各种标点符号、特殊字符、大小写混杂、词语之间没有明确边界等。在将这些文本喂给AI模型进行分析之前,必须进行一系列的预处理步骤,将其

2025-07-09 11:53:17 668

原创 【Python】AI机器人

在本章中,我们将从最底层开始,深入剖析Python语言的核心构建块。这些看似基础的概念,实则是构建任何复杂系统,包括我们即将开发的AI会话机器人的基石。我们将不仅仅讲解语法,更重要的是,会揭示每个概念在AI机器人架构中扮演的角色和其内部机制。理解Python的基本特性,如同理解AI机器人内部处理信息和作出决策的基本原理。在AI机器人中,信息是其存在的根本。用户输入、内部状态、分析结果、推荐内容,都必须通过数据来承载。Python提供了多种基本数据类型,它们各有特点,适用于不同的信息表达需求。整数 (Inte

2025-07-09 11:41:09 646

原创 【Python】数字图像2

7.1 卷积神经网络(CNN)的核心机制与高级组件在QR码特征学习中的应用卷积神经网络是处理图像数据的核心工具,其设计的灵感来源于生物视觉皮层。它通过层层递进的抽象,从原始像素中自动学习到越来越复杂的特征表示。7.1.1 卷积层(Convolutional Layer)的深层理解卷积层是CNN的基石,它通过卷积操作提取图像特征。[(I * K)(x, y) = \sum_{i} \sum_{j} I(x-i, y-j) K(i, j)]上述公式描述了二维卷积操作。其中(I)代表输入图像,(K)代表卷

2025-07-09 11:23:22 508

原创 【Python】数字图像

要理解如何增强二维码图像,我们必须首先回到最根本的问题:图像究竟是什么?它如何被计算机理解和表示?我们的眼睛感知的是来自物理世界的光线。当光线反射物体并进入相机镜头时,它在感光元件(如CCD或CMOS传感器)上形成一个模拟的光学图像。这个光学图像本质上是连续的光强分布。数字化过程是把这种连续的模拟信号转换成离散的数字信号。这个过程包含两个核心步骤:采样(Sampling)和量化(Quantization)。采样(Sampling): 想象一张无限精细的连续照片。采样就像在这张照片上,按照一定的间隔,均匀地选

2025-07-09 11:09:37 299

原创 【Python】pytorch2

对于一个二维输入信号 (I) 和一个二维卷积核 (K),它们的离散卷积 (S) 的计算公式通常表示为:([公式图片:二维离散卷积公式])在深度学习中,更常见的是使用互相关(cross-correlation)而不是严格的卷积。互相关与卷积的区别在于卷积核在使用前会进行180度旋转,但在实践中,由于卷积核是可学习的,旋转与否不会影响模型的学习能力,因此PyTorch及大多数深度学习框架实现的是互相关操作,并习惯性地称之为“卷积”。互相关操作可以简化为:

2025-07-09 10:44:30 955

原创 【Python】 pytorch

在深入PyTorch的广阔世界之前,一个稳定、隔离且易于管理 的Python环境是必不可少的。如同建造摩天大楼需要坚实的地基,机器学习项目的开发也需要一个清洁且无冲突的软件环境。在这里,我们将专注于使用Anaconda或Miniconda来管理您的Python环境。Anaconda是一个功能完备的Python和R数据科学平台,它集成了conda包管理器、Python解释器以及大量预安装的常用数据科学库(如NumPy、SciPy、Pandas、Matplotlib等)。对于初学者或希望快速搭建起手即用环境的用

2025-07-09 10:26:42 764

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除