【Python】Jupyter

第一章:Jupyter的本体论——超越表象的本质与架构深度解析

要真正理解Jupyter,我们首先需要从其诞生的根源和核心定位开始。Jupyter并非仅仅是一个IDE(集成开发环境),而是一个旨在促进可重复性研究交互式计算协作式知识共享的开放标准和一套开源工具生态系统。

1.1 从IPython到Jupyter:一场交互式计算的革命

Jupyter的起源可以追溯到2001年,Fernando Pérez 博士启动的IPython项目。最初,IPython(Interactive Python)是一个增强的Python交互式Shell,它极大地改善了Python解释器的用户体验,引入了命令历史、自动补全、魔术命令(Magic Commands)等功能。

随着时间的推移,IPython的功能不断扩展,尤其是在2011年引入了基于Web的Notebook接口,这使得代码、文本、数学公式和可视化能够整合在同一个文档中。这个基于Web的IPython Notebook,就是今天Jupyter Notebook的直接前身。

然而,项目的目标并不仅仅局限于Python。为了支持更多编程语言(如R、Julia等),并且为了更好地体现其跨语言的特性,“IPython Notebook”在2014年更名为“Jupyter Notebook”。“Jupyter”这个名字来源于其最初支持的三种核心语言:Julia、Python 和 R,同时也向天文学家伽利略·伽利莱(Galileo Galilei)的笔记本致敬(Galileo的笔记本在意大利语中读作“Giulio”,与Jupyter发音相似)。

这次更名标志着Jupyter从一个Python特有的工具,转型为一个通用型的、支持多种编程语言的交互式计算平台。它定义了一套开放的通信协议和文档格式,使得不同语言的“内核”(Kernels)可以与前端的Web应用进行交互。

核心理念的演进:

  • 交互性 (Interactivity): 即时反馈,允许用户逐步构建和探索代码。
  • 可重复性 (Reproducibility): 代码、输出、解释文档一体化,确保他人可以重现结果。
  • 可解释性 (Explicability): 通过Markdown文本、公式和可视化,清晰地解释分析过程和结论。
  • 多语言支持 (Polyglot Support): 不局限于Python,通过可插拔的内核架构支持任何编程语言。
1.2 Jupyter的核心组件与内部工作流深度剖析

Jupyter Notebook并非一个单一的应用程序,而是一个由多个协同工作的组件构成的复杂生态系统。理解这些组件及其相互作用机制,是掌握Jupyter高级应用的基础。

  1. Jupyter Notebook 文档(.ipynb 文件)—— 知识的载体与结构化存储

    • 本质: 一个Jupyter Notebook文件(通常以.ipynb为扩展名)并非简单的文本文件,而是一个遵循JSON (JavaScript Object Notation) 标准的结构化文档。它是一种人类可读、机器可解析的数据交换格式。
    • 内部结构解析: 每个.ipynb文件都是一个JSON对象,其中包含了以下核心字段:
      • nbformatnbformat_minor: 指定Notebook的格式版本。这对于保证不同版本Jupyter软件的兼容性至关重要。例如,"nbformat": 4, "nbformat_minor": 5 表示这是一个Jupyter Notebook格式的第四版第五次修订。
      • cells: 这是一个JSON数组,包含了Notebook中的所有单元(Cell)。每个Cell又是一个独立的JSON对象。
      • metadata: 这是一个JSON对象,存储了Notebook的元数据,例如内核信息(kernelspec)、语言信息(language_info)以及其他用户自定义的元数据。
    // 这是一个简化版的 .ipynb 文件JSON结构示例
    {
         
         
      "cells": [
        {
         
         
          "cell_type": "markdown", // 单元格类型:Markdown
          "id": "unique-markdown-id", // 唯一标识符
          "metadata": {
         
         },           // 该单元格的元数据
          "source": [               // 单元格内容,Markdown文本
            "# 欢迎来到Jupyter Notebook",
            "",
            "这是一个**Markdown**单元格。"
          ]
        },
        {
         
         
          "cell_type": "code",     // 单元格类型:代码
          "execution_count": 1,    // 执行计数,表示该单元格被执行的次数
          "id": "unique-code-id",  // 唯一标识符
          "metadata": {
         
         },           // 该单元格的元数据
          "outputs": [              // 该单元格的输出,也是一个数组
            {
         
         
              "data": {
         
                      // 输出数据
                "text/plain": [
                  "Hello, Jupyter!" // 纯文本输出
                ]
              },
              "execution_count": 1, // 对应的执行计数
              "metadata": {
         
         },       // 输出的元数据
              "output_type": "execute_result" // 输出类型:执行结果
            }
          ],
          "source": [               // 单元格内容,Python代码
            "print(\"Hello, Jupyter!\")"
          ]
        }
      ],
      "metadata": {
         
         
        "kernelspec": {
         
         
          "display_name": "Python 3", // 显示名称
          "language": "python",       // 语言名称
          "name": "python3"           // 内核名称
        },
        "language_info": {
         
         
          "codemirror_mode": {
         
         
            "name": "ipython",
            "version": 3
          },
          "file_extension": ".py",
          "mimetype": "text/x-python",
          "name": "python",
          "nbconvert_exporter": "python",
          "pygments_lexer": "ipython3",
          "version": "3.9.7"
        }
      },
      "nbformat": 4,
      "nbformat_minor": 5
    }
    
    • cells 数组中的 cell_type

      • markdown: 包含Markdown格式的文本内容,用于解释、描述或注释。
      • code: 包含可执行的代码以及代码执行后的输出。
      • raw: 包含原始文本,通常用于nbconvert工具的特殊处理,例如直接输出到特定格式。
    • source 字段: 存储了单元格的原始输入内容(Markdown文本或代码)。它是一个字符串数组,每行对应一个字符串元素,末尾没有换行符。

    • outputs 字段(仅限 code 类型单元格): 这是一个数组,存储了代码单元格执行后的所有输出,包括:

      • stream: 标准输出(stdout)和标准错误(stderr),例如 print() 函数的输出。
      • display_data: 富媒体输出,如图片、HTML、Markdown、LaTeX等。
      • execute_result: 表达式的最终结果(例如,Python中一个单元格的最后一行表达式的值)。
      • error: 错误信息,包含错误类型、错误值和堆栈跟踪。
        每个输出对象内部也包含 datametadata 等字段,用于描述输出的具体内容和渲染方式。
    • metadata 字段: 在Notebook级别和Cell级别都存在。它用于存储非内容性的信息,例如:

      • Notebook级别的 kernelspeclanguage_info 定义了Notebook期望使用的内核和语言环境。
      • Cell级别的 metadata 可以用来存储折叠状态 (collapsed: true)、是否可编辑 (editable: false) 等UI相关信息,或用于 nbconvert 的标签 (tags: ["hide_input", "report"])。
    • 版本控制的挑战: 由于.ipynb是JSON格式,代码执行会改变execution_countoutputs字段,这使得Notebook文件在版本控制系统(如Git)中难以有效管理,因为即使代码没有改变,输出的细微变化也会导致文件被标记为修改。后续我们将探讨解决此问题的工具,如 nbdimejupytext

  2. Jupyter Web 应用程序(Frontend)—— 用户交互的门户

    • 本质: Jupyter Web 应用程序是用户在浏览器中看到和交互的界面。它是一个基于现代Web技术(HTML、CSS、JavaScript)构建的单页应用。
    • 主要功能:
      • 渲染 .ipynb 文件:将JSON格式的Notebook文档解析并渲染成用户友好的HTML页面,显示代码、Markdown、图片、公式等。
      • 提供交互式UI:允许用户创建、编辑、保存Notebook,执行单元格,管理文件,切换内核等。
      • 处理用户输入:将用户在代码单元格中输入的代码发送给后端。
      • 展示内核输出:接收来自后端内核的执行结果、错误信息、富媒体数据,并在浏览器中正确显示。
    • 技术栈: 主要使用JavaScript框架(如React/Preact在JupyterLab中,或早期的Backbone.js在经典Jupyter Notebook中)、RequireJS进行模块加载、以及各种前端库。
    • 通信机制: Web应用程序通过WebSocket协议与Jupyter服务器进行实时双向通信。WebSocket是一种在单个TCP连接上进行全双工通信的协议,非常适合需要低延迟、高频率数据交换的场景,如实时代码执行、输出流传输等。
  3. Jupyter 服务器(Backend)—— 桥接前端与内核的枢纽

    • 本质: Jupyter服务器是一个Python应用程序,它在用户启动Jupyter Notebook(或JupyterLab)时在后台运行。它是连接浏览器前端和各种语言内核的核心枢纽。
    • 主要功能:
      • 提供Web服务: 监听HTTP请求,为浏览器提供静态文件(HTML、CSS、JS)和Notebook文件服务。
      • Notebook 文件管理: 负责Notebook文件的创建、打开、保存、删除和重命名等操作。它通过一个名为 ContentsManager 的组件来处理这些文件系统操作。
      • 内核管理: 启动、停止、重启内核,并维护与每个运行中的内核的连接。
      • 消息代理: 将来自Web前端的执行请求转发给相应的内核,并将内核的执行结果、状态更新等信息转发回Web前端。这个转发过程通过ZeroMQ消息队列实现。
      • 认证与授权: (在JupyterHub等高级部署中)处理用户登录、权限管理。
    • 通信机制:
      • HTTP/HTTPS: 用于最初的网页加载、静态资源服务和文件操作。
      • WebSocket: 用于前端和服务器之间的实时通信,特别是代码执行请求和输出结果的传输。
      • ZeroMQ: 这是服务器与“内核”之间进行通信的关键协议。ZeroMQ是一个高性能的异步消息库,它提供了多种消息模式,非常适合进程间通信和分布式应用。
  4. Kernels(内核)—— 真正的计算引擎

    • 本质: 内核是Jupyter架构中执行代码的“大脑”。每个内核都是一个独立的进程,负责特定编程语言的代码执行、结果计算以及状态维护。当您在Jupyter Notebook中选择“Python 3”内核时,实际上Jupyter服务器会启动一个Python解释器进程作为该Notebook的内核。
    • 主要功能:
      • 代码执行: 接收来自Jupyter服务器的代码,并在其自己的环境中执行。
      • 结果返回: 将代码执行的结果(包括标准输出、富媒体输出、错误信息等)返回给Jupyter服务器。
      • 会话状态管理: 维护变量、函数定义、导入模块等会话状态。这意味着在一个Notebook中定义的变量和函数,在后续的单元格中依然可用,直到内核重启。
      • 自动补全与内省: 提供代码自动补全建议和对象内省(例如,obj? 查看帮助文档)的功能。
    • 多语言支持: Jupyter的强大之处在于其多语言支持。只要有语言实现了Jupyter内核协议,就可以在Jupyter Notebook中使用。目前有超过100种语言的内核可用,包括Python (IPython)、R (IRKernel)、Julia (IJulia)、Node.js (ICSharp)、Scala (Scala-Kernel) 甚至 Bash (bash_kernel) 等。
    • 通信机制 (ZeroMQ): 内核通过ZeroMQ与Jupyter服务器进行通信。这种通信不是简单的请求-响应模式,而是基于一套复杂的消息协议,包括:
      • shell 消息:用于发送代码执行请求、代码补全请求、检查请求等。
      • iopub 消息:用于发布执行结果、标准输出、错误、状态更新等。这是内核向前端发送信息的通道。
      • stdin 消息:用于处理用户输入(例如 input() 函数)。
      • control 消息:用于中断内核、重启内核等控制命令。
      • hb (Heartbeat) 消息:心跳机制,用于检测内核是否仍然存活和响应。
1.3 Jupyter的通信链条:HTTP, WebSocket, ZeroMQ的协作

为了更深入地理解Jupyter的内部机制,我们来详细梳理一下从用户输入代码到结果显示这一完整过程中的通信链条。

(1) 启动Jupyter Notebook/Lab 服务:
当您在终端执行 jupyter notebookjupyter lab 命令时,Jupyter 服务器进程启动。

  • 它会监听一个端口(通常是 8888),等待HTTP连接。
  • 它会生成一个token(安全令牌)用于身份验证。

(2) 浏览器访问:
浏览器通过 http://localhost:8888/?token=your_token 或通过服务器自动打开的URL访问Jupyter服务器。

  • 这是一个标准的HTTP GET请求,服务器返回Jupyter Web应用程序的HTML、CSS和JavaScript文件。

(3) Web应用程序加载并建立WebSocket连接:
Web应用程序在浏览器中加载完成后,它会做几件事:

  • 加载Notebook文件: 如果是打开一个已有的Notebook,前端会通过HTTP请求向服务器获取.ipynb文件的JSON内容。
  • 建立WebSocket连接: 前端会主动向服务器的 /api/kernels/api/sessions 路径建立一个WebSocket连接。这个连接将用于后续所有实时的交互。

(4) 用户输入代码并执行:
当用户在一个代码单元格中输入代码,并点击“运行”或按下 Shift + Enter 时:

  • 前端处理: Web应用程序将代码内容打包成一个JSON格式的“执行请求”(execute_request)消息。
  • WebSocket发送: 这个 execute_request 消息通过之前建立的WebSocket连接发送给Jupyter服务器。

(5) Jupyter 服务器处理请求并转发给内核:
Jupyter服务器接收到来自前端的 execute_request 消息后:

  • 身份验证: 验证请求的来源(通过token或session)。
  • 消息解析: 解析 execute_request 消息,识别出目标Notebook对应的内核ID。
  • ZeroMQ转发: 服务器通过其内部的ZeroMQ客户端,将 execute_request 消息发送给相应的内核进程。服务器与内核之间通常建立5个ZeroMQ通道:
    • shell (SHELL): 请求-响应模式,用于代码执行、补全、检查。
    • iopub (IOPUB): 发布-订阅模式,用于内核广播执行结果、状态、print输出。
    • stdin (STDIN): 请求-响应模式,用于处理用户输入(如 input())。
    • control (CONTROL): 请求-响应模式,用于控制信号(如中断、重启)。
    • hb (Heartbeat): 请求-响应模式,心跳机制,检测内核是否存活。
      execute_request 消息通过 shell 通道发送。

(6) 内核执行代码并返回结果:
目标内核进程接收到 execute_request 消息后:

  • 代码解析与执行: 内核(例如Python解释器)解析并执行接收到的代码。
  • 状态更新: 内核会发布 status 消息到 iopub 通道,告知前端其状态变为“忙碌”(busy)。
  • 输出生成:
    • 如果代码有标准输出(如 print()),内核会发送 stream 消息到 iopub 通道。
    • 如果代码生成了富媒体(如Matplotlib图),内核会发送 display_data 消息到 iopub 通道。
    • 如果代码有最终执行结果(如单元格最后一行表达式),内核会发送 execute_result 消息到 iopub 通道。
    • 如果发生错误,内核会发送 error 消息到 iopub 通道。
  • 执行完成: 代码执行完毕后,内核会再次发送 status 消息到 iopub 通道,告知前端其状态变为“空闲”(idle)。

(7) Jupyter 服务器接收内核输出并转发给前端:
Jupyter 服务器通过其ZeroMQ服务器端接收到来自内核的各种 iopub 消息(status, stream, display_data, execute_result, error)。

  • 服务器将这些消息封装并通过WebSocket连接实时转发给前端。

(8) 前端接收输出并渲染:
Web应用程序接收到来自服务器的WebSocket消息后:

  • 解析消息: 根据消息类型,更新UI。
  • 渲染输出: 将文本、图像、HTML等内容渲染到对应的代码单元格下方。
  • 更新执行计数: 更新单元格的执行计数。
  • 更新UI状态: 根据内核状态(忙碌/空闲)更新UI指示器。

这个复杂的通信链路确保了Jupyter Notebook的实时交互性、多语言支持以及稳定的会话管理。理解了这些底层机制,您就能更好地诊断问题,并针对性地进行优化和定制。


第二章:环境配置与核心工具链——构建您的Jupyter工作站

在深入Jupyter的实践之前,建立一个稳定、高效、可控的开发环境至关重要。本章将详细介绍Jupyter及其相关工具的安装、配置与管理。

2.1 Anaconda与Miniconda:数据科学的预装发行版

对于Python数据科学和机器学习工作者而言,Anaconda 和 Miniconda 是最推荐的Jupyter及其依赖库的安装方式。它们不仅仅是Python发行版,更是一个强大的环境管理和包管理系统。

为什么选择Anaconda/Miniconda?

  • 包管理: conda 是一个跨平台的包管理器,能够安装Python包以及非Python依赖(如NumPy、SciPy等所需的C/Fortran库)。它解决了许多Python pip 工具在处理系统级依赖时的痛点。
  • 环境管理: conda 允许您创建独立的虚拟环境,每个环境可以有不同的Python版本和不同的库版本。这彻底解决了“依赖地狱”问题,确保不同项目所需的库版本互不冲突。
  • 预装库: Anaconda是一个大型发行版,预装了超过750个数据科学、机器学习和科学计算的常用库,包括Jupyter、NumPy、Pandas、Matplotlib、Scikit-learn、TensorFlow等。这使得您开箱即用,无需手动安装大量依赖。
  • 轻量级选择: Miniconda是Anaconda的轻量级版本,它只包含 conda、Python及其最少量的依赖。您可以根据需要手动安装其他库,这对于磁盘空间有限或希望更精细控制环境的用户非常有用。

安装步骤详解 (以Miniconda为例,Anaconda类似)

  1. 下载安装包:

    • 访问 Anaconda 或 Miniconda 官方网站。
    • 根据您的操作系统(Windows, macOS, Linux)和Python版本(通常推荐最新稳定版Python 3.x)下载对应的安装程序。
    • 例如:Miniconda3 Windows 64-bit。
  2. 执行安装程序:

    • Windows: 双击.exe安装文件。
      • 推荐选择“Just Me”(仅为当前用户安装),这样不需要管理员权限。
      • 关键步骤: 在“Advanced Installation Options”中,强烈推荐不要勾选“Add Anaconda to my PATH environment variable”。虽然勾选会方便在任何地方直接使用 conda 命令,但它可能会与系统中已有的Python安装或其他环境管理工具(如venv)冲突。最佳实践是只在Anaconda Prompt或特定的终端中使用 conda
      • 选择安装路径,建议使用默认路径或自定义一个没有空格和特殊字符的路径。
    • macOS: 双击.pkg安装文件,或使用命令行安装.sh文件。
      • bash Miniconda3-latest-MacOSX-x86_64.sh
      • 按照提示进行,同样注意不要将其添加到系统PATH。
    • Linux: 下载.sh文件,然后在终端执行。
      • bash Miniconda3-latest-Linux-x86_64.sh
      • 按照提示进行。
  3. 验证安装:

    • 打开一个新的终端(在Windows上是 Anaconda Prompt,macOS/Linux上是您的常规终端)。
    • 输入以下命令:
      conda --version
      # 预期输出:conda 23.x.x
      
      该命令用于检查Conda是否成功安装并可执行。
    • 输入以下命令:
      python --version
      # 预期输出:Python 3.x.x (由Conda提供)
      
      此命令确认Conda默认环境中的Python版本。
2.2 Conda环境管理:隔离与复用的艺术

使用Conda创建和管理虚拟环境是进行数据科学项目的最佳实践。

核心概念:

  • base 环境: Conda安装后默认激活的环境,包含Conda本身和基础Python。不建议在 base 环境中直接安装项目依赖。
  • 虚拟环境: 相互隔离的Python运行环境。每个环境可以有独立的Python版本和独立的库安装。

常用Conda环境管理命令:

  1. 创建新环境:

    conda create --name my_project_env python=3.9
    # --name 或 -n:指定环境名称,这里是 my_project_env
    # python=3.9:指定该环境中使用的Python版本,您可以指定其他版本如3.8、3.10等
    # 作用:创建一个名为 my_project_env 的新Conda环境,并指定其Python版本为3.9。
    

    您也可以在创建时就指定要安装的包:

    conda create -n my_ml_env python=3.9 numpy pandas matplotlib scikit-learn jupyterlab
    # 作用:创建一个名为 my_ml_env 的环境,并同时安装Python 3.9、NumPy、Pandas、Matplotlib、Scikit-learn和JupyterLab。
    
  2. 激活环境:
    在使用特定环境之前,必须先激活它。

    conda activate my_project_env
    # 作用:激活名为 my_project_env 的Conda环境。激活后,所有后续的 pip 或 conda 命令都将在该环境中执行。
    

    激活后,您的终端提示符通常会显示当前激活的环境名称(例如 (my_project_env))。

  3. 安装包到当前环境:
    激活环境后,可以使用 conda installpip install 安装包。

    • 推荐 conda install 优先使用 conda install,因为它会考虑非Python依赖并解决更复杂的冲突。
      conda install ipywidgets
      # 作用:在当前激活的环境中安装 ipywidgets 包及其所有Conda依赖。
      
    • 使用 pip install 如果Conda仓库中没有某个包,或者您有特定的PyPI包需求,可以使用 pip install
      pip install tensorflow
      # 作用:在当前激活的环境中安装 TensorFlow 包。
      
      注意: 混合使用 conda installpip install 可能会偶尔导致问题,但对于大多数常见场景,它们可以协同工作。尽量先尝试 conda install
  4. 列出所有环境:

    conda env list
    # 或者
    conda info --envs
    # 作用:显示您系统中所有已创建的Conda环境及其路径。当前激活的环境会有一个星号 (*) 标记。
    
  5. 列出当前环境中的包:

    conda list
    # 作用:列出当前激活环境中所有已安装的包及其版本。
    
  6. 导出环境配置:
    将环境配置导出为YAML文件,方便团队协作或在其他机器上重建环境。

    conda env export > environment.yaml
    # 作用:将当前激活环境的配置(包括Python版本、所有已安装的Conda和Pip包)导出到名为 environment.yaml 的文件中。
    

    environment.yaml 示例内容:

    name: my_project_env
    channels:
      - conda-forge
      - defaults
    dependencies:
      - python=3.9
      - numpy=1.21.5
      - pandas=1.3.5
      - pip:
        - some-pip-only-package==1.0.0
    
  7. 从文件创建/重建环境:

    conda env create -f environment.yaml
    # 作用:根据 environment.yaml 文件中定义的配置创建一个新的Conda环境。
    
  8. 删除环境:

    conda remove --name my_project_env --all
    # 作用:彻底删除名为 my_project_env 的Conda环境及其所有内容。
    
  9. 退出环境:

    conda deactivate
    # 作用:退出当前激活的Conda环境,返回到之前的环境(通常是 base 环境或系统默认环境)。
    
2.3 JupyterLab与Jupyter Notebook:现代与经典的抉择

Jupyter生态系统提供了两个主要的Web界面供用户选择:经典的Jupyter Notebook和更现代的JupyterLab。

  1. 经典的Jupyter Notebook (Jupyter Notebook)

    • 特点: 界面简洁,功能集中在单一的Notebook文档编辑上。每个Notebook都在浏览器的一个独立标签页中打开。
    • 优点: 历史悠久,社区支持广泛,界面清晰,适合初学者快速上手。
    • 缺点: 不支持多文档同时在一个窗口管理,文件浏览器功能有限,扩展性相对不如JupyterLab。
  2. JupyterLab (JupyterLab)

    • 特点: 新一代的交互式开发环境。它提供了一个集成的工作空间,您可以在一个窗口中同时打开和管理多个Notebook、代码文件、终端、数据文件、甚至Markdown预览等。它更加模块化和可扩展。
    • 优点:
      • 统一界面: 在一个标签页内管理所有资源,无需频繁切换浏览器标签。
      • 多文档支持: 并排查看和编辑多个Notebook或文件。
      • 集成终端: 直接在JupyterLab中打开Shell终端。
      • 文件浏览器: 功能更强大的文件管理界面。
      • 丰富的扩展生态: 提供了强大的插件系统,可以扩展各种功能(如Git集成、CSV查看器、TensorBoard集成等)。
      • 可定制性: 界面布局高度可定制。
    • 缺点: 功能较多,对于初学者可能稍显复杂;某些旧的Jupyter Notebook扩展可能不兼容或需要对应的JupyterLab版本。

推荐:
对于新项目和长期使用,强烈推荐使用JupyterLab。它的集成度和扩展性将极大地提升您的工作效率。经典Jupyter Notebook仍然可以用于简单的任务或兼容性需求。

安装JupyterLab:
在您创建的Conda环境中:

conda activate my_ml_env # 激活您的环境
conda install jupyterlab
# 作用:在当前激活的环境中安装 JupyterLab。JupyterLab 会自动安装 Jupyter Notebook 的核心组件。

启动JupyterLab/Notebook:
激活环境后,在终端中输入相应的命令:

jupyter lab
# 作用:启动 JupyterLab 服务器并在浏览器中打开JupyterLab界面。
jupyter notebook
# 作用:启动经典 Jupyter Notebook 服务器并在浏览器中打开经典Notebook界面。

无论是启动JupyterLab还是Jupyter Notebook,它们都会在本地启动一个Web服务器,并在浏览器中打开一个新的标签页或窗口。终端会显示服务器的日志信息,包括监听的URL和token。

2.4 多内核管理:让Jupyter驾驭多种语言环境

Jupyter的魅力之一在于其多语言支持。要在Jupyter中切换不同的Python版本或使用其他语言(如R、Julia),您需要将对应的内核注册到Jupyter。

核心原理:
Jupyter通过查找一系列预定义路径下的内核规格(kernel specification)文件来识别可用的内核。一个内核规格是一个目录,包含一个 kernel.json 文件和可选的图标文件。kernel.json 文件告诉Jupyter如何启动该语言的解释器。

将Conda环境注册为Jupyter内核:
当您创建一个新的Conda环境时,默认情况下Jupyter并不知道它的存在。您需要手动将其注册为一个Jupyter内核。

  1. 创建或激活目标Conda环境:

    conda create -n my_datascience_env python=3.10 numpy pandas matplotlib
    # 作用:创建一个名为 my_datascience_env 的环境,并安装Python 3.10以及一些数据科学库。
    conda activate my_datascience_env
    # 作用:激活该环境。
    
  2. 在该环境中安装 ipykernel
    ipykernel 是IPython项目提供的核心包,它实现了Jupyter内核协议,使得Python环境能够作为Jupyter内核运行。

    conda install ipykernel
    # 作用:在当前激活的 my_datascience_env 环境中安装 ipykernel 包。
    
  3. 注册为Jupyter内核:
    使用 ipykernel install 命令将当前环境注册为Jupyter的一个可用内核。

    python -m ipykernel install --user --name my_datascience_env --display-name "Python (Data Science - 3.10)"
    # python -m ipykernel install:执行 ipykernel 的安装模块。
    # --user:将内核安装到用户级别的Jupyter内核目录,这样不需要管理员权限。
    # --name my_datascience_env:指定内核的内部名称(通常与Conda环境名称保持一致)。
    # --display-name "Python (Data Science - 3.10)":指定在Jupyter界面中显示的名称,更具描述性。
    # 作用:将当前的 Python 3.10 Conda 环境注册为一个名为 "Python (Data Science - 3.10)" 的Jupyter内核。
    

    执行成功后,您会看到类似如下的输出,指示内核规格文件存放的路径:

    Installed kernelspec my_datascience_env in C:\Users\YourUser\AppData\Roaming\jupyter\kernels\my_datascience_env
    

    这个路径下会生成一个名为 my_datascience_env 的文件夹,其中包含 kernel.json 文件。

  4. 在Jupyter中验证和切换内核:

    • 启动JupyterLab/Notebook (jupyter labjupyter notebook)。
    • 在Jupyter界面中:
      • 创建新Notebook时: 您可以在“File” -> “New Notebook”或启动器界面中看到新注册的内核(例如“Python (Data Science - 3.10)”)。
      • 切换现有Notebook的内核: 打开一个Notebook后,选择“Kernel” -> “Change Kernel”,然后从列表中选择您想使用的内核。

删除注册的内核:
如果您不再需要某个内核,可以将其从Jupyter中删除。

jupyter kernelspec uninstall my_datascience_env
# 作用:从Jupyter的内核列表中移除名为 my_datascience_env 的内核。

注意: 卸载内核只是从Jupyter中移除其显示,并不会删除实际的Conda环境。如果您想彻底删除环境,还需要使用 conda remove --name my_datascience_env --all

为其他语言安装内核 (示例: R)
如果您想在Jupyter中使用R语言,您需要安装对应的R内核(IRKernel)。

  1. 安装R(如果尚未安装): 从CRAN或通过Conda安装R。
    conda install -c conda-forge r-base
    # 作用:通过conda-forge渠道安装R语言基础环境。
    
  2. 在R中安装 IRkernel 包:
    激活R环境后,启动R:
    R
    # 作用:启动R语言解释器。
    
    在R命令行中执行:
    install.packages("IRkernel")
    # 作用:在R环境中安装 IRkernel 包。
    IRkernel::installspec()
    # 作用:将R环境注册为Jupyter的一个内核。
    # 可以指定显示名称:IRkernel::installspec(name = 'ir_kernel', displayname = 'R Language')
    
    退出R:
    q()
    # 作用:退出R语言解释器。
    
    现在,启动JupyterLab,您应该能看到一个新的“R”内核选项。

通过以上步骤,您已经掌握了Jupyter环境的搭建、管理以及多内核配置的精髓。这将为后续深入学习Jupyter的交互式编程机制打下坚实的基础。


第三章:交互式编程的核心机制与高级实践——Cell、Magic Commands与富媒体

Jupyter Notebook 最核心的交互单元是“单元格”(Cell)。理解单元格的类型、生命周期以及如何利用魔法命令和富媒体进行高效表达,是掌握Jupyter精髓的关键。

3.1 Cell (单元) 的生命周期与类型详解

Jupyter Notebook 的内容被组织成一系列独立的单元格。每个单元格都可以独立执行,但它们共享同一个内核会话状态。

  1. 单元格类型:多样化的表达形式

    Jupyter支持以下三种基本单元格类型:

    • 代码单元格 (Code Cells):

      • 作用: 包含可执行的代码(默认是Python代码,取决于您选择的内核)。当您运行一个代码单元格时,其内容会被发送到后端内核执行。
      • 输入区域: 通常有一个编号 In [ ]:,表示输入区域。执行后,方括号内会显示执行次数,例如 In [1]:
      • 输出区域: 代码执行的结果会显示在输入区域下方,通常有一个编号 Out [ ]:。输出可以是纯文本、错误信息、警告、图表、HTML、图片等富媒体格式。
      • 会话状态: 代码单元格的执行会影响内核的全局会话状态(如变量定义、函数声明、模块导入)。后续单元格可以访问之前单元格中定义的变量。
      # 这是一个代码单元格的示例
      # 定义一个变量
      my_variable = "Hello, Jupyter!" # 定义一个字符串变量 my_variable,并赋值为 "Hello, Jupyter!"
      
      # 打印变量的值
      print(my_variable) # 打印 my_variable 变量的内容到标准输出
      
      # 进行一个简单的计算
      result = 10 + 20 # 将 10 和 20 相加,结果赋值给 result 变量
      result # 直接将 result 变量的值作为单元格的最后一行表达式,其结果会被自动显示在输出中
      

      预期输出:

      Hello, Jupyter!
      30
      
    • Markdown 单元格 (Markdown Cells):

      • 作用: 包含使用Markdown语法编写的文本内容,用于提供解释、描述、公式、标题、列表、链接、图片等非代码信息。
      • 渲染: Markdown单元格在执行(或渲染)后,会将其Markdown文本转换为漂亮的富文本(HTML)显示在Notebook中。
      • 不执行代码: Markdown单元格不会被发送到内核执行,它们纯粹用于文档和展示。
      • 支持LaTeX: 内置支持LaTeX公式渲染,使用 $ 包裹行内公式,使用 $$ 包裹块级公式。
      # Jupyter Notebook 介绍
      
      ## 什么是 Jupyter?
      Jupyter 是一个**交互式**计算环境,支持多种编程语言。
      
      ### 核心特性
      - **代码与文本混合:** 将代码、代码输出、解释性文本和可视化结合在一个文档中。
      - **Markdown 支持:** 提供丰富的文本格式选项。
      - **数学公式支持:** 使用 LaTeX 语法。例如,圆的面积公式:$A = \pi r^2$。
      
      ### 块级公式示例
      $$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
      # Jupyter Notebook 介绍:一级标题,概述文章主题。
      # 什么是 Jupyter?:二级标题,引入 Jupyter 的定义。
      # Jupyter 是一个**交互式**计算环境,支持多种编程语言。:普通段落,使用双星号 `**` 加粗“交互式”。
      # 核心特性:三级标题,列举 Jupyter 的主要特点。
      # - **代码与文本混合:** 将代码、代码输出、解释性文本和可视化结合在一个文档中。:无序列表项,再次使用 `**` 加粗关键短语。
      # - **Markdown 支持:** 提供丰富的文本格式选项。:无序列表项。
      # - **数学公式支持:** 使用 LaTeX 语法。例如,圆的面积公式:$A = \pi r^2$。:无序列表项,`$` 包裹的是行内 LaTeX 公式。
      # 块级公式示例:三级标题,引出块级公式。
      # $$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$:双美元符号 `$$` 包裹的是块级 LaTeX 公式,它将独立居中显示。
      

      关于公式显示:
      鉴于模型无法直接生成图片,所有公式将以LaTeX语法在Markdown中呈现。Jupyter Notebook内置了MathJax库,可以将这些LaTeX公式渲染成漂亮的数学符号。在您复制这份指南到Jupyter Notebook后,运行Markdown单元格即可看到公式的正确显示效果。

    • 原始 NBConvert 单元格 (Raw NBConvert Cells):

      • 作用: 这些单元格的内容会原样传递给 nbconvert 工具。它们不会被Jupyter Notebook本身渲染或执行。主要用于在将Notebook转换为其他格式(如PDF、HTML、Python脚本)时,插入特定的原始内容。
      • 应用场景: 例如,在转换为LaTeX或reStructuredText时,可以插入原始的LaTeX或reST语法,确保转换后的文档格式符合特定要求。
      # 这是一个原始 NBConvert 单元格的示例
      \section*{附录 A:数据来源}
      本实验数据来源于...
      # 这是一个原始 NBConvert 单元格的示例:纯文本标题,不是 Markdown 标题。
      # \section*{附录 A:数据来源}:原始 LaTeX 命令,用于在转换为 PDF 时创建无编号的章节标题。
      # 本实验数据来源于...:纯文本内容。
      

      如果您在Jupyter Notebook中查看此单元格,它只会显示原始文本。当您使用 nbconvert 将Notebook转换为LaTeX或PDF时,这部分内容才会被作为原始LaTeX处理。

  2. 单元格的执行生命周期

    每个代码单元格都有一个清晰的执行生命周期:

    • 等待执行:In [ ]: 单元格在队列中等待内核执行。
    • 正在执行:In [*]: 单元格当前正在被内核执行。此时,您无法执行其他单元格(除非使用了异步执行或多线程,但Jupyter默认是单线程同步执行)。
    • 执行完成:In [N]: 单元格执行完毕,方括号中会显示一个数字 N,表示这是本次内核会话中第 N 个被执行的单元格。输出(如果有)会显示在下方。这个数字是递增的,即使您跳过某个单元格或多次执行同一个单元格,它也会继续增加。

    理解执行顺序的重要性:
    Jupyter Notebook的强大之处在于其非线性的执行能力,您可以随意跳跃执行单元格。但这也带来了潜在的问题:

    • 依赖问题: 如果单元格B依赖于单元格A中定义的变量或函数,而您在执行B之前没有执行A,或者先执行了B,然后修改并重新执行了A,可能会导致不一致的结果。
    • 状态污染: 频繁修改和重新执行单元格,可能会导致内核中的变量状态与您期望的不符。

    最佳实践:

    • 按序执行: 尽量按照从上到下的顺序执行单元格,以确保依赖关系正确。
    • 清理和重启内核: 如果遇到奇怪的错误或不一致结果,尝试“Kernel” -> “Restart & Clear Output”或“Restart & Run All”来重置内核状态并重新执行所有单元格。
    • 模块化代码: 将重复使用的代码或复杂逻辑封装成函数或类,并放在Notebook开头的单元格中,一次性定义。
    • 文档化: 使用Markdown单元格清晰地解释每个代码块的目的和假设。
3.2 魔法命令 (Magic Commands) 的奥秘与效能提升

魔法命令是IPython(以及Jupyter)提供的一种特殊语法,用于执行一些非标准的Python操作,例如计时、文件系统操作、运行外部脚本、加载扩展等。它们以 % (行魔法) 或 %% (单元魔法) 开头。

核心原理:
魔法命令并非Python语法本身,而是IPython Shell的一个特性。当IPython解释器遇到以 %%% 开头的行时,它不会将其作为普通Python代码处理,而是将其拦截并作为特殊命令进行处理。这些命令通常用于控制IPython会话的行为、与操作系统交互或进行性能分析。

1. 行魔法 (%):作用于单行

行魔法命令只作用于包含该命令的单行。

  • %time%timeit:性能分析的利器

    • %time <Python 代码> 测量一行Python代码的单次执行时间。

      # 测量单个操作的执行时间
      %time sum(range(1000000)) # 计算从0到999999所有整数的和,并测量其执行时间
      # 作用:执行 sum(range(1000000)) 并打印其运行时间。
      

      预期输出: Wall time: X ms (挂钟时间) 或 CPU times: Y ms (CPU时间)。

    • %timeit <Python 代码> 精确测量一行Python代码的执行时间。它会多次(通常是几百到几千次)执行代码,并给出平均值和标准差,以减少测量误差。

      # 精确测量一行代码的执行时间
      %timeit [x**2 for x in range(1000)] # 使用列表推导式计算前1000个整数的平方,并进行多次测量以获取精确平均时间
      # 作用:多次执行 [x**2 for x in range(1000)] 并打印其平均运行时间及标准差。
      

      预期输出: X µs ± Y ns per loop (mean ± std. dev. of Z runs, A loops each)

  • %run <脚本路径>:执行外部Python脚本

    • 作用: 在当前Jupyter内核中执行一个外部Python脚本文件。这与使用 import 导入模块不同,%run 会将脚本中的所有顶层代码直接在当前会话的全局命名空间中执行,包括任何定义的变量和函数。
    • 示例:
      假设您有一个 my_script.py 文件:
      # my_script.py
      import random # 导入 random 模块
      
      my_script_var = random.randint(1, 100) # 生成一个1到100之间的随机整数并赋值给 my_script_var
      
      def greet(name): # 定义一个名为 greet 的函数,接受一个参数 name
          return f"Hello, {
               
               name} from script!" # 返回一个格式化字符串
      
      在Notebook中:
      %run my_script.py # 运行 my_script.py 脚本文件
      print(my_script_var) # 打印脚本中定义的变量 my_script_var 的值
      print(greet("Alice")) # 调用脚本中定义的 greet 函数并打印其返回值
      # 作用:执行 my_script.py,然后访问并打印其定义的变量和函数。
      
      注意: %run 会将脚本的输出直接显示在Notebook中,并且脚本中的所有变量和函数都会污染当前Notebook的全局命名空间。这在快速原型验证和测试时很有用,但在构建大型项目时,更推荐使用 import 机制。
  • %load_ext <扩展名>:加载IPython扩展

    • 作用: 加载一个IPython扩展。许多有用的功能都是通过扩展提供的。
    • 示例: 加载 autoreload 扩展,该扩展允许您在不重启内核的情况下自动重新加载已修改的模块。
      %load_ext autoreload # 加载 autoreload IPython 扩展
      %autoreload 2 # 启用 autoreload 模式 2,表示每次执行前都会重新加载所有模块
      # 作用:加载 autoreload 扩展并配置它在模块文件改变时自动重新加载。
      
      这个扩展对于开发Python包并频繁在Notebook中测试其更改非常有用。
  • %load <文件路径>:将文件内容加载到单元格

    • 作用: 将指定文件的内容加载到当前单元格中。这在您想编辑外部文件内容或将其作为代码示例时非常方便。
      %load my_script.py # 将 my_script.py 文件的内容加载到当前单元格中
      # 作用:将 my_script.py 的文本内容插入到当前单元格,覆盖原有内容。
      
      注意: %load 会直接替换单元格中的所有内容,包括 %load 命令本身。
  • %matplotlib inline / %matplotlib notebook:控制Matplotlib绘图后端

    • 作用: 这两个是特殊的行魔法,用于控制Matplotlib图表在Jupyter Notebook中的显示方式。

    • %matplotlib inline 默认模式,将Matplotlib图表嵌入到Notebook输出中,作为静态图片(PNG/SVG)。每次绘图都会生成一张新的静态图。

      %matplotlib inline # 配置 Matplotlib 绘图为内联静态图片模式
      import matplotlib.pyplot as plt # 导入 Matplotlib 的绘图模块
      import numpy as np # 导入 NumPy 库,用于数值计算
      
      x = np.linspace(0, 10, 100) # 生成一个从0到10包含100个点的等差数列
      y = np.sin(x) # 计算 x 的正弦值
      
      plt.plot(x, y) # 绘制正弦曲线
      plt.title("Simple Sine Wave (Inline)") # 设置图表标题
      plt.xlabel("X-axis") # 设置X轴标签
      plt.ylabel("Y-axis") # 设置Y轴标签
      plt.show() # 显示图表
      # 作用:设置 Matplotlib 以静态图片形式显示图表,并绘制一个简单的正弦波图。
      
    • %matplotlib notebook 启用交互式图表模式。图表会显示为动态的JavaScript对象,您可以缩放、平移、保存等。

      %matplotlib notebook # 配置 Matplotlib 绘图为交互式模式
      import matplotlib.pyplot as plt # 导入 Matplotlib 的绘图模块
      import numpy as np # 导入 NumPy 库
      
      x = np.linspace(0, 10, 100) # 生成一个从0到10包含100个点的等差数列
      y = np.cos(x) # 计算 x 的余弦值
      
      plt.plot(x, y) # 绘制余弦曲线
      plt.title("Interactive Cosine Wave") # 设置图表标题
      plt.xlabel("X-axis") # 设置X轴标签
      plt.ylabel("Y-axis") # 设置Y轴标签
      plt.show() # 显示图表
      # 作用:设置 Matplotlib 以交互式形式显示图表,并绘制一个简单的余弦波图,允许用户进行缩放和平移。
      

      注意: %matplotlib notebook 可能会占用更多资源,并且在某些环境中可能不如 %matplotlib inline 稳定。对于交互式图表,Plotly、Altair或Bokeh等库通常提供更丰富的交互性。

  • 文件系统操作:%pwd, %ls, %cd

    • %pwd Print Working Directory,显示当前工作目录。
      %pwd # 打印当前Jupyter内核的工作目录
      # 作用:显示当前工作目录的路径。
      
    • %ls List files,列出当前目录下的文件和文件夹。功能类似于Unix/Linux的 ls 或Windows的 dir
      %ls -l # 列出当前目录下文件和文件夹的详细信息 (长格式)
      # 作用:显示当前目录下的文件和子目录列表,并提供详细信息,如权限、所有者、大小、修改日期等。
      
    • %cd <路径> Change Directory,改变当前工作目录。
      %cd ../data # 改变当前工作目录到上一级目录下的 data 文件夹
      # 作用:将 Jupyter 内核的工作目录切换到上级目录中的 'data' 文件夹。
      
      注意: 这些命令会改变Jupyter内核的工作目录,而不是您终端的当前工作目录。
  • %env:环境变量操作

    • %env 显示所有环境变量。
      %env # 显示当前Jupyter内核会话中的所有环境变量
      # 作用:列出当前运行环境中设置的所有环境变量及其值。
      
    • %env VAR=value 设置或修改环境变量。
      %env MY_VAR="my_value" # 设置一个名为 MY_VAR 的环境变量,其值为 "my_value"
      # 作用:在当前内核会话中设置一个环境变量 MY_VAR。
      
    • %env VAR 获取环境变量的值。
      %env MY_VAR # 获取并显示 MY_VAR 环境变量的值
      # 作用:打印环境变量 MY_VAR 的当前值。
      
      这对于配置数据库连接、API密钥(尽管敏感信息不应直接硬编码在Notebook中)或路径等非常有用。

2. 单元魔法 (%%):作用于整个单元格

单元魔法命令必须是单元格的第一行,它会改变整个单元格的解释方式。

  • %%writefile <文件路径>:将单元格内容写入文件

    • 作用: 将当前单元格(除了 %%writefile 这一行)的内容写入到指定的文件中。这对于快速创建脚本文件、配置文件或文本文件非常有用。
      %%writefile my_new_script.py # 将当前单元格内容写入到 my_new_script.py 文件中
      # 这是一个新创建的Python脚本 # 脚本的注释
      
      def calculate_square(num): # 定义一个函数,计算数字的平方
          return num * num # 返回数字的平方
      
      if __name__ == "__main__": # 当脚本作为主程序运行时执行以下代码
          print(f"The square of 5 is: {
               
               calculate_square(5)}") # 打印 5 的平方
      # 作用:将此单元格中除了第一行魔法命令外的所有内容保存到名为 my_new_script.py 的文件中。
      
    • %%writefile -a <文件路径> 追加内容到文件末尾。
      %%writefile -a my_new_script.py # 将当前单元格内容追加到 my_new_script.py 文件末尾
      
      # 这是一个追加的内容
      print("Appending more content.") # 打印一条消息,表示正在追加内容
      # 作用:将此单元格内容追加到 my_new_script.py 文件的末尾。
      
  • %%bash, %%sh, %%cmd:Shell命令的无缝集成

    • 作用: 允许您在Jupyter单元格中直接执行操作系统Shell命令。
      • %%bash (或 %%sh): 在类Unix系统(Linux/macOS)上执行Bash或Shell命令。
      • %%cmd: 在Windows上执行CMD命令。
      • 注意: 如果您是Windows用户并安装了Git Bash或WSL,也可以使用 %%bash
      %%bash # 以 Bash Shell 模式执行以下命令
      echo "Hello from Bash!" # 打印字符串
      ls -l /tmp/ # 列出 /tmp/ 目录的详细内容
      # 作用:在 Bash 环境中执行打印语句和文件列表命令。
      
      %%cmd # 以 Windows CMD 模式执行以下命令
      echo "Hello from CMD!" # 打印字符串
      dir C:\Users\ # 列出 C:\Users\ 目录的内容
      # 作用:在 Windows CMD 环境中执行打印语句和文件列表命令。
      
    • 变量交互: 您可以在Shell命令中访问Python变量,也可以将Shell命令的输出捕获到Python变量中。
      python_var = "MyValue" # 定义一个Python变量
      # 作用:定义一个名为 python_var 的 Python 字符串变量。
      
      %%bash # 以 Bash Shell 模式执行以下命令
      echo "Python variable in Bash: $python_var" # 在 Bash 中访问 Python 变量,使用 $ 符号
      # 作用:在 Bash 脚本中打印 Python 变量 `python_var` 的值。
      
      # 将 Bash 命令的输出捕获到 Python 变量中
      BASH_OUTPUT=$(pwd) # 执行 pwd 命令获取当前目录,并赋值给 Bash 变量 BASH_OUTPUT
      echo "The current directory is: $BASH_OUTPUT" # 打印当前目录
      # 作用:在 Bash 中执行 `pwd` 命令并将其输出存储到 `BASH_OUTPUT` 变量中,然后打印。
      
      注意: %env 魔法命令也可以在Python和Shell之间传递环境变量。
  • %%latex, %%HTML, %%javascript:多语言嵌入与高级渲染

    • 作用: 允许您在单元格中直接编写并渲染特定语言的代码(如LaTeX、HTML、JavaScript)。Jupyter会使用适当的渲染器来处理这些内容。

    • %%latex

      %%latex # 以 LaTeX 模式渲染以下内容
      \documentclass{article} # 文档类声明
      \usepackage{amsmath} # 导入 amsmath 包,用于数学公式
      \begin{document} # 文档开始
      
      这是在 Jupyter Notebook 中渲染的 LaTeX 文档。
      
      勾股定理:
      \[a^2 + b^2 = c^2\]
      
      \end{document} # 文档结束
      # 作用:将单元格内容视为 LaTeX 代码并尝试渲染。在 Jupyter 中,通常是渲染其中的数学公式。
      

      当运行此单元格时,Jupyter会尝试渲染其中的LaTeX公式和文本。由于Jupyter主要通过MathJax渲染数学公式,对于完整的\documentclass等结构可能无法完全渲染为标准PDF文档。它主要用于展示公式。

    • %%HTML

      %%HTML # 以 HTML 模式渲染以下内容
      <h3>这是一个 HTML 标题</h3> # HTML 三级标题
      <p style="color: blue;">这是一个蓝色的段落。</p> # 带蓝色样式的 HTML 段落
      <img src="https://via.placeholder.com/150" alt="占位图"> # 插入一张图片,使用占位图服务
      <script> # JavaScript 代码块开始
          console.log("Hello from HTML cell!"); // 在浏览器控制台打印一条消息
      </script> # JavaScript 代码块结束
      # 作用:将单元格内容作为 HTML 渲染,包括标题、段落、图片和内联 JavaScript。
      

      这对于在Notebook中嵌入自定义UI、外部网站内容或更复杂的布局非常有用。

    • %%javascript (或 %%js):

      %%javascript # 以 JavaScript 模式执行以下内容
      alert("Hello from JavaScript!"); // 弹出一个警告框
      
      // 访问 Notebook 的DOM元素
      var notebook_element = document.getElementById("notebook-container"); // 获取 Notebook 容器元素
      if (notebook_element) {
             
              // 如果元素存在
          console.log("Notebook container found!"); // 在控制台打印消息
          // 可以在这里进行一些 DOM 操作
      }
      # 作用:在浏览器中执行此单元格中的 JavaScript 代码,弹窗并尝试获取 Notebook DOM 元素。
      

      这对于进行前端交互、DOM操作或与Jupyter前端进行高级通信非常有用。

  • %%capture <变量名>:输出捕获的精细控制

    • 作用: 捕获一个单元格的所有输出(标准输出、标准错误、富媒体输出)到一个Python变量中,而不是直接显示在单元格下方。这对于需要在后续代码中处理或检查输出非常有用。
      %%capture captured_output # 捕获当前单元格的所有输出到 captured_output 变量中
      
      print("This is stdout.") # 打印到标准输出
      import sys # 导入 sys 模块
      sys.stderr.write("This is stderr.\n") # 打印到标准错误
      
      # 模拟生成图片(实际不会渲染,因为输出被捕获)
      import matplotlib.pyplot as plt # 导入 Matplotlib
      fig, ax = plt.subplots() # 创建一个图表和轴
      ax.plot([1,2,3], [4,5,6]) # 绘制简单的线条
      plt.title("Plot captured") # 设置标题
      plt.close(fig) # 关闭图表,防止在后续没有捕获的单元格中显示
      # 作用:执行打印语句和 Matplotlib 绘图,并将所有这些输出捕获到 `captured_output` 变量中,而不直接显示。
      
      捕获后,captured_output 变量是一个 IPython.utils.capture.CapturedIO 对象,您可以访问其 stdoutstderroutputs 属性。
      print("Captured stdout:", captured_output.stdout) # 打印捕获到的标准输出
      print("Captured stderr:", captured_output.stderr) # 打印捕获到的标准错误
      # 作用:打印之前 `%%capture` 魔法命令捕获到的标准输出和标准错误内容。
      
      captured_output.outputs 是一个列表,包含了所有富媒体输出的字典表示。

3. 自定义魔法命令:IPython扩展机制深度剖析 (概念性)

IPython允许用户创建自己的魔法命令,以满足特定的工作流需求。这涉及到编写Python函数或类,并使用@register_line_magic@register_cell_magic装饰器进行注册。

  • 概念性示例:自定义一个简单的行魔法 %hello_world

    from IPython.core.magic import register_line_magic, register_cell_magic # 从 IPython 库导入魔法命令注册装饰器
    
    @register_line_magic # 注册为行魔法命令
    def hello_world(line): # 定义一个名为 hello_world 的函数,它将作为魔法命令执行,line 参数接收命令后面的字符串
        "Says hello to the given name or 'World' if no name is given." # 魔法命令的文档字符串
        if line: # 如果 line 参数不为空
            print(f"Hello, {
           
           line}!") # 打印个性化问候语
        else: # 如果 line 参数为空
            print("Hello, World!") # 打印默认问候语
    
    # 作用:定义并注册一个名为 `%hello_world` 的行魔法命令,它可以接受一个可选参数并打印相应的问候语。
    

    运行上述代码单元格后,您就可以在其他单元格中使用这个新的魔法命令了:

    %hello_world # 调用新注册的行魔法命令,不带参数
    %hello_world Alice # 调用新注册的行魔法命令,带参数 "Alice"
    # 作用:执行自定义的 `%hello_world` 魔法命令。
    

    预期输出:

    Hello, World!
    Hello, Alice!
    
  • 自定义单元魔法 %%custom_cell_magic (概念性)
    单元魔法函数会接收两个参数:line(魔法命令后面的一行字符串)和 cell(整个单元格的内容,不包括魔法命令那一行)。

    @register_cell_magic # 注册为单元魔法命令
    def custom_cell_magic(line, cell): # 定义一个名为 custom_cell_magic 的函数,line 接收魔法命令后的参数,cell 接收单元格的其余内容
        "Processes the cell content based on the line argument." # 魔法命令的文档字符串
        print(f"Line argument: {
           
           line}") # 打印行参数
        print("--- Cell Content ---") # 打印分隔符
        print(cell) # 打印单元格内容
        # 作用:定义并注册一个名为 `%%custom_cell_magic` 的单元魔法命令,它将打印命令后的参数和单元格的全部内容。
    

    使用示例:

    %%custom_cell_magic some_setting # 调用自定义的单元魔法命令,并传递参数 "some_setting"
    
    This is the content
    of the cell.
    It can be multi-line.
    # 作用:执行自定义的 `%%custom_cell_magic` 魔法命令,将第一行参数和后续内容作为参数传递给函数。
    

    预期输出:

    Line argument: some_setting
    --- Cell Content ---
    This is the content
    of the cell.
    It can be multi-line.
    

    自定义魔法命令的强大之处在于,您可以结合Python的强大能力,实现高度定制化的Notebook行为,例如自动化代码生成、特定格式的输出处理、或与外部工具的集成。

3.3 富媒体与可视化:超越静态的动态表达

Jupyter Notebook 不仅仅可以显示文本和代码,它还具备强大的富媒体渲染能力,能够直接在输出中集成图片、HTML、视频、音频以及最重要的数据可视化图表。

1. 图像显示:

Jupyter支持直接显示图像。最常用的方式是使用Markdown语法嵌入图片,或者使用Python的IPython.display模块。

  • Markdown 嵌入图片:

    ### Markdown 图片示例
    
    这是一张本地图片:
    ![本地图片示例](images/local_image.png) # 相对路径,指向 Notebook 同目录下的 images 文件夹中的 local_image.png
    
    这是一张网络图片:
    ![网络图片示例](https://www.google.com/images/branding/googlelogo/1x/googlelogo_color_272x92dp.png) # 绝对URL,指向 Google Logo
    # 作用:在 Markdown 单元格中插入两张图片,一张来自本地路径,一张来自网络 URL。
    

    注意: 对于本地图片,确保图片文件与Notebook文件在同一目录或可访问的子目录中。

  • Python 显示图片 (IPython.display.Image):
    当您需要通过Python代码动态生成或加载图片并显示时,可以使用 IPython.display 模块。

    from IPython.display import Image, display, HTML # 从 IPython.display 模块导入 Image、display 和 HTML 类
    
    # 显示一张网络图片
    network_image_url = "https://cdn.pixabay.com/photo/2015/04/23/22/00/tree-736885_1280.jpg" # 定义网络图片的 URL
    display(Image(url=network_image_url, width=400, height=300)) # 使用 Image 对象显示网络图片,并设置宽度和高度
    # 作用:通过 IPython.display.Image 显示一张来自互联网的图片,并指定其显示尺寸。
    
    # 显示一张本地图片 (假设当前目录下有 my_local_image.png)
    # 首先,您可能需要确保有一张名为 my_local_image.png 的图片在您的 Notebook 同目录下
    # 例如,您可以通过 %%writefile 或者手动将图片放入目录
    
    # 示例:通过 PIL 库创建一个简单的图片并保存,然后显示
    from PIL import Image as PILImage # 从 PIL 库导入 Image 类,并重命名为 PILImage 以避免冲突
    from io import BytesIO # 导入 BytesIO,用于处理二进制数据流
    import base64 # 导入 base64 模块,用于编码图片数据
    
    # 创建一个简单的红色图片
    img_data = BytesIO() # 创建一个内存中的二进制流
    pil_img = PILImage.new('RGB', (100, 50), color = 'red') # 创建一个 100x50 像素的红色 RGB 图像
    pil_img.save(img_data, format='PNG') # 将图像保存为 PNG 格式到内存流
    img_data_b64 = base64.b64encode(img_data.getvalue()).decode() # 将图片二进制数据进行 base64 编码,并解码为字符串
    
    # 使用 Image 对象显示 Base64 编码的图片
    display(Image(data=img_data_b64, format='png', width=100, height=50)) # 使用 Image 对象显示 Base64 编码的图片数据
    # 作用:使用 Pillow (PIL) 库创建一张红色图片,将其编码为 Base64 字符串,然后通过 `IPython.display.Image` 显示在 Notebook 中。
    

2. 音频与视频嵌入:

同样,IPython.display 模块也提供了 AudioVideo 类来嵌入媒体文件。

  • 音频:

    from IPython.display import Audio # 从 IPython.display 导入 Audio 类
    
    # 示例:从 URL 加载并播放音频
    audio_url = "https://www.soundhelix.com/examples/mp3/SoundHelix-Song-1.mp3" # 定义一个音频文件的 URL
    display(Audio(url=audio_url)) # 使用 Audio 对象显示并播放音频
    # 作用:在 Notebook 中嵌入一个音频播放器,播放指定 URL 的 MP3 音频。
    
  • 视频:

    from IPython.display import Video # 从 IPython.display 导入 Video 类
    
    # 示例:从 URL 加载并播放视频
    video_url = "https://www.w3schools.com/html/mov_bbb.mp4" # 定义一个视频文件的 URL
    display(Video(url=video_url, width=640, height=360)) # 使用 Video 对象显示并播放视频,设置尺寸
    # 作用:在 Notebook 中嵌入一个视频播放器,播放指定 URL 的 MP4 视频,并设置显示尺寸。
    

3. 数据表格美化:Pandas Style API与df.to_html()的结合

Pandas DataFrame 在Jupyter中通常以简洁的HTML表格形式显示。但Pandas提供了强大的 Styler 对象,允许您对DataFrame进行复杂的样式设置,使其更具可读性和可视化效果。

  • Pandas DataFrame 的默认显示:

    import pandas as pd # 导入 Pandas 库
    
    data = {
         
          # 定义一个字典作为数据源
        'Name': ['Alice', 'Bob', 'Charlie', 'David'], # 姓名列表
        'Age': [24, 27, 22, 32], # 年龄列表
        'Score': [85.5, 90.0, 78.2, 92.1], # 分数列表
        'Pass': [True, True, False, True] # 通过状态列表
    }
    df = pd.DataFrame(data) # 从字典创建 DataFrame
    df # 直接显示 DataFrame
    # 作用:创建一个 Pandas DataFrame 并直接在 Notebook 中显示其内容。
    
  • 使用 Styler 进行表格美化:
    Pandas Styler 对象提供了链式方法来应用各种CSS样式。

    • 高亮最大/最小值:

      df.style.highlight_max(axis=0, subset=['Age', 'Score']) \
               .highlight_min(axis=0, subset=['Age', 'Score']) # 高亮 Age 和 Score 列的最大值和最小值
      # 作用:高亮显示 DataFrame 中 'Age' 和 'Score' 列的每列最大值和最小值。
      

      axis=0 表示按列操作,subset 指定要应用样式的列。

    • 渐变色条:

      df.style.background_gradient(subset=['Score'], cmap='viridis') # 根据 Score 列的值应用渐变背景色
      # 作用:根据 'Score' 列的数值大小,为该列单元格添加从一种颜色渐变到另一种颜色的背景色,使用 'viridis' 颜色映射。
      
    • 条件格式化:

      def color_negative_red(val): # 定义一个函数,如果值为负数则返回红色样式
          color = 'red' if val < 0 else 'black' # 如果值小于0,颜色为红色,否则为黑色
          return f'color: {
               
               color}' # 返回 CSS 样式字符串
      
      df_num = pd.DataFrame({
             
             'A': [1, -2, 3], 'B': [4, 5, -6]}) # 创建一个包含负数的 DataFrame
      df_num.style.applymap(color_negative_red, subset=['A', 'B']) # 将 color_negative_red 函数应用于 A 和 B 列
      # 作用:创建一个包含数值的 DataFrame,并使用自定义函数将 'A' 和 'B' 列中的负数文本颜色设置为红色。
      

      applymap 用于元素级别的样式应用。

    • 完整示例:多重样式叠加

      def highlight_pass(val): # 定义一个函数,根据 'Pass' 列的值返回不同的背景颜色
          color = 'lightgreen' if val else 'lightcoral' # 如果为 True 则浅绿色,否则浅珊瑚色
          return f'background-color: {
               
               color}' # 返回 CSS 样式字符串
      
      (df.style # 开始 Pandas Styler 链式操作
       .format({
             
             'Score': "{:.1f}"}) # 格式化 'Score' 列,保留一位小数
       .bar(subset=['Age'], color='#ADD8E6', align='zero') # 为 'Age' 列添加蓝色柱状图背景,从0开始
       .applymap(highlight_pass, subset=['Pass']) # 应用 highlight_pass 函数到 'Pass' 列
       .set_caption("Student Performance Report") # 设置表格标题
       .set_table_styles([ # 设置表格的整体 CSS 样式
           {
             
             'selector': 'th', 'props': [('font-size', '12pt'), ('text-align', 'center')]}, # 表头样式
           {
             
             'selector': 'caption', 'props': [('color', 'darkblue'), ('font-size', '16pt'), ('font-weight', 'bold')]} # 标题样式
       ])
      ) # 结束链式操作并显示样式后的 DataFrame
      # 作用:对 DataFrame 进行复杂的样式设置,包括分数格式化、年龄列柱状图、通过状态背景色、表格标题和自定义 CSS 样式。
      

      通过这些方法,您可以将原始的Pandas DataFrame转换成具有专业报告级别的美观表格。

4. 交互式可视化:ipywidgets的原理与应用

静态图表在数据探索中常常不够用。ipywidgets 库是Jupyter生态系统中的一个强大工具,它允许您在Notebook中创建交互式的HTML控件(如滑块、下拉菜单、按钮、文本框等),并将它们与Python代码连接起来,实现动态数据探索和可视化。

  • 核心原理: ipywidgets 通过前端的JavaScript库和后端的Python代码之间的双向通信来实现交互性。当用户在浏览器中操作一个widget时,前端会发送消息到后端内核,更新Python变量;当Python代码更新变量时,内核也会发送消息回前端,更新widget的显示。

  • 安装 ipywidgets
    在您的Jupyter环境中安装 ipywidgets

    conda activate my_ml_env # 激活您的环境
    conda install ipywidgets # 安装 ipywidgets 包
    jupyter nbextension enable --py widgetsnbextension # 为经典 Notebook 启用 widget 扩展
    jupyter labextension install @jupyter-widgets/jupyterlab-manager # 为 JupyterLab 安装 widget 管理器
    # 作用:安装 ipywidgets 库,并为经典 Jupyter Notebook 和 JupyterLab 启用相应的扩展,以便正确渲染和管理交互式控件。
    

    请注意,JupyterLab通常会自动安装其对应的扩展,但经典Notebook可能需要手动启用widgetsnbextension

  • interact 函数:快速创建交互式界面
    ipywidgets 提供了 interact 函数,可以非常方便地将Python函数的参数转换为交互式控件。

    from ipywidgets import interact, interactive, fixed, interact_manual # 导入 interact 相关的函数
    from IPython.display import display # 导入 display 函数
    import matplotlib.pyplot as plt # 导入 Matplotlib
    import numpy as np # 导入 NumPy
    
    def plot_sine_wave(amplitude, frequency): # 定义一个函数,用于绘制正弦波
        x = np.linspace(0, 2 * np.pi, 200) # 生成 x 值,从 0 到 2π,共 200 个点
        y = amplitude * np.sin(frequency * x) # 计算 y 值,受幅度和频率控制
        
        plt.figure(figsize=(8, 4)) # 创建一个指定大小的图表
        plt.plot(x, y) # 绘制曲线
        plt.title(f"Sine Wave (Amplitude: {
           
           amplitude:.1f}, Frequency: {
           
           frequency:.1f})") # 设置标题,显示当前幅度和频率
        plt.xlabel("X") # 设置 X 轴标签
        plt.ylabel("Y") # 设置 Y 轴标签
        plt.grid(True) # 显示网格
        plt.show() # 显示图表
    
    # 使用 interact 将函数参数转换为滑块
    interact(plot_sine_wave, amplitude=(0.1, 5.0, 0.1), frequency=(0.5, 10.0, 0.5)); # 使用 interact 函数创建交互式控件
    # amplitude=(0.1, 5.0, 0.1) 定义了一个滑块,范围从 0.1 到 5.0,步长为 0.1
    # frequency=(0.5, 10.0, 0.5) 定义了另一个滑块,范围从 0.5 到 10.0,步长为 0.5
    # 作用:通过 `interact` 函数,创建两个滑块分别控制正弦波的振幅和频率,实现实时交互式绘图。
    

    当您拖动滑块时,plot_sine_wave 函数会实时重新执行,并更新图表。

  • 直接使用 Widget 对象:更精细的控制
    对于更复杂的布局和事件处理,您可以直接创建和组合 ipywidgets 提供的各种控件。

    from ipywidgets import IntSlider, Button, Output, VBox, HBox # 导入各种 Widget 类和布局容器
    from IPython.display import display # 导入 display 函数
    
    # 创建一个整数滑块
    slider = IntSlider( # 创建一个整数滑块控件
        min=0, # 最小值
        max=10, # 最大值
        step=1, # 步长
        description='Value:' # 描述文本
    )
    # 作用:创建一个名为 `slider` 的整数滑块控件,设置其范围、步长和描述。
    
    # 创建一个按钮
    button = Button(description="Click Me!") # 创建一个按钮控件
    # 作用:创建一个名为 `button` 的按钮控件,并设置其显示文本。
    
    # 创建一个输出区域,用于显示结果
    output_area = Output() # 创建一个输出区域 Widget
    # 作用:创建一个名为 `output_area` 的输出 Widget,用于捕获和显示内容。
    
    # 定义按钮点击事件处理函数
    def on_button_click(b): # 定义一个按钮点击时调用的函数,b 是按钮事件对象
        with output_area: # 在 output_area 的上下文中执行以下操作
            output_area.clear_output() # 清除之前的输出
            print(f"Button clicked! Slider value: {
           
           slider.value}") # 打印按钮被点击的消息和滑块当前值
    
    button.on_click(on_button_click) # 为按钮注册点击事件处理函数
    # 作用:定义一个函数,当按钮被点击时,清除 `output_area` 的内容,并打印当前滑块的值。然后将此函数注册为按钮的点击事件处理器。
    
    # 组合控件并显示
    display(HBox([slider, button])) # 将滑块和按钮水平排列并显示
    display(output_area) # 显示输出区域
    # 作用:将滑块和按钮水平放置在一个容器中显示,并在其下方显示一个输出区域。
    

    当您点击按钮时,output_area 中会显示当前滑块的值。

ipywidgets 是构建交互式仪表板、数据探索工具和教学演示的强大基石,结合Matplotlib、Seaborn或Plotly等绘图库,可以创建出极其丰富的动态可视化体验。


第四章:内部机制与高级定制——深入Jupyter的骨髓

要成为Jupyter的真正高手,仅仅会使用其表面功能是不够的。本章将带领您深入Jupyter的文件格式、内核通信协议,以及如何对其进行高级配置和扩展,以满足个性化需求。

4.1 Jupyter Notebook的文件格式 (.ipynb) 深度解析

我们已经在第一章中简要提到了 .ipynb 文件是JSON格式。现在,我们将更深入地探讨其对版本控制、协作和自动化带来的挑战与解决方案。

1. .ipynb 文件的JSON结构:

回顾其核心结构:

{
   
   
  "cells": [ /* 单元格数组 */ ],
  "metadata": {
   
    /* Notebook 级别的元数据 */ },
  "nbformat": 4, /* 主要格式版本 */
  "nbformat_minor": 5 /* 次要格式版本 */
}
  • cells 数组: 包含一系列字典,每个字典代表一个单元格。

    • Code Cell 的内部:
      {
             
             
        "cell_type": "code",
        "execution_count": N, // 每次执行都会递增,这是版本控制的痛点之一
        "metadata": {
             
             },       // 单元格元数据,可以包含 `collapsed: true` 等 UI 状态
        "outputs": [          // 重点!这里存储了所有执行结果,包括文本、图片(Base64编码)、错误等。
          {
             
             
            "data": {
             
             
              "image/png": "iVBORw0KGgoAAAANSUhEUg...", // 图片数据通常是 Base64 编码的字符串
              "text/plain": [ "..." ]
            },
            "metadata": {
             
             },
            "output_type": "display_data" // 或 "stream", "execute_result", "error"
          }
        ],
        "source": [ "print('Hello')" ] // 原始代码或 Markdown 文本
      }
      
      核心问题:execution_countoutputs 字段。 即使您的代码没有任何更改,只要您重新运行单元格,execution_count 就会改变,输出内容(特别是图表,其Base64编码可能每次略有不同)也会导致文件内容发生巨大变化。这使得传统的基于文本行的Git版本控制工具难以追踪 .ipynb 文件的真正代码逻辑变化,导致大量的无意义的冲突。
  • metadata 字段:

    • Notebook 级别:
      "metadata": {
             
             
        "kernelspec": {
             
             
          "display_name": "Python 3 (ipykernel)",
          "language": "python",
          "name": "python3"
        },
        "language_info": {
             
              /* 更多语言相关的元数据 */ },
        "colab": {
             
              /* Google Colab 特有的元数据 */ },
        "vscode": {
             
              /* VS Code Notebook 特有的元数据 */ }
      }
      
      这些元数据描述了Notebook的环境信息,以及一些平台特定的配置。
    • Cell 级别:
      "metadata": {
             
             
        "tags": ["hide_input", "report"], // 用户自定义标签,用于自动化或过滤
        "scrolled": true,                 // 输出是否滚动
        "collapsed": true                 // 单元格是否折叠
      }
      
      这些元数据可以控制单元格的显示行为或用于脚本化处理。

2. 版本控制的挑战与解决方案:nbdime, jupytext

由于 .ipynb 文件的JSON特性,Git等版本控制工具在处理它时会遇到困难。针对此,社区开发了一些工具:

  • nbdime:专门用于Jupyter Notebook的Git diff/merge工具

    • 作用: nbdime 提供了一套专门针对 .ipynb 文件进行比较(diff)和合并(merge)的工具。它能够智能地忽略 execution_countoutputs 的变化,只关注代码和Markdown内容的实际改动。
    • 安装:
      pip install nbdime # 安装 nbdime
      nbdime config --enable --global # 配置 Git 使用 nbdime 作为默认的 diff/merge 工具
      # 作用:安装 `nbdime` 工具包,并将其全局配置为 Git 的 Notebook 差异比较和合并工具,以便更好地处理 `.ipynb` 文件的版本控制。
      
    • 使用: 一旦配置好,当您对 .ipynb 文件执行 git diffgit merge 时,Git会自动调用 nbdime 来生成更友好的、专注于代码和Markdown内容变化的差异报告。
      例如,git diff my_notebook.ipynb 会显示一个更具可读性的差异视图,忽略输出变化。
    • 原理: nbdime 在比较时会解析Notebook的JSON结构,提取出source部分进行比较,并智能处理metadataoutputs的变化。
  • jupytext:Notebook与纯文本格式的互转利器

    • 作用: jupytext 是一个非常强大的工具,它允许您将Jupyter Notebook(.ipynb)与多种纯文本格式(如 .py.md.Rmd 等)进行双向同步。这意味着您可以将Notebook的内容保存为纯Python脚本,并在Git中进行版本控制,同时仍能保留其Notebook的交互性。

    • 安装:

      pip install jupytext # 安装 jupytext
      # 作用:安装 `jupytext` 工具包。
      
    • 工作模式:

      • pair 模式 (推荐): 一个 .ipynb 文件与一个纯文本文件(如 .py)保持同步。当您保存Notebook时,jupytext 会自动更新对应的纯文本文件;当您在外部编辑器修改纯文本文件时,jupytext 可以在Notebook打开时或下次保存时同步回 .ipynb
      • light 模式: 将Notebook保存为带有特殊注释的纯Python脚本(.py),其中注释用于标记Markdown单元格和原始单元格。
      • auto 模式: jupytext 会根据文件后缀自动检测并选择同步策略。
    • 配置 pair 模式示例:
      在Jupyter Notebook或JupyterLab中,打开一个 .ipynb 文件。

      • 在JupyterLab中: 右键点击 .ipynb 文件 -> “Open With” -> “Jupytext Notebook”或“Jupytext Markdown”。或者使用“File” -> “Jupytext”菜单。
      • jupyter_notebook_config.py 中全局配置:
        # ~/.jupyter/jupyter_notebook_config.py
        c.ContentsManager.pre_save_hook = lambda model, **kwargs: jupytext.writes(model, fmt="py:percent")
        # 作用:配置 Jupyter Notebook 的内容管理器,在保存 .ipynb 文件时,自动将其转换为纯 Python 脚本(使用百分号注释标记 Markdown 单元格)并写入磁盘。
        
        更好的方式是直接在Notebook中添加元数据。
    • 通过 Notebook 元数据配置 jupytext (推荐)
      打开一个 .ipynb 文件,然后选择 “Edit” -> “Edit Notebook Metadata”。
      在JSON中添加或修改 jupytext 字段:

      {
             
             
        "jupytext": {
             
             
          "formats": "ipynb,py:percent" // 表示这个 Notebook 会同步保存为 .ipynb 和 .py 文件,使用百分号格式
        },
        "kernelspec": {
             
              
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宅男很神经

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值