yolov7-pose:基于COCO-KeyPoint的yolov7-pose训练

YOLOv7作为YOLOv4的最新迭代版本,在5-160FPS范围内速度和精度超越现有目标检测器。相比YOLOv4,YOLOv7由原团队打造,不仅速度大幅提升,在精度上也有显著提高。相较于基于transformer和卷积的检测器,YOLOv7-E6在速度上分别提升509%和551%,精度分别高出2%和0.7%。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在美团刚刚发出yolov6,AB大神就带着yolov7来了。。。。。这速度是真快。。

在 5-160 FPS 范围内速度和精度超过所有已知目标检测器。

在 后不到两个星期,提出 YOLOv4 的团队就发布了更新一代的版本。

YOLOv7 的论文被提交到了预印版论文平台 arXiv 上,其三位作者 Chien-Yao Wang、Alexey Bochkovskiy 和 Hong-Yuan Mark Liao 是 YOLOv4 的原班人马。

相对于其他类型的工具,YOLOv7-E6 目标检测器(56 FPS V100,55.9% AP)比基于 transformer 的检测器 SWINL Cascade-Mask R-CNN(9.2 FPS A100,53.9% AP)速度上高出 509%,精度高出 2%,比基于卷积的检测器 ConvNeXt-XL Cascade-Mask R-CNN (8.6 FPS A100, 55.2% AP) 速度高出 551%,精度高出 0.7%。

此外, YOLOv7 的在速度和精度上的表现也优于 YOLOR、YOLOX、Scaled-YOLOv4、YOLOv5、DETR 等多种目标检测器。

YoloV7得github

https://github.com/WongKinYiu/yolov7

同时yolov7也出了pose:

https://github.com/WongKinYiu/yolov7/tree/pose

今天我们来训练一下yolov7-pose

1、数据集

数据集我们依旧采用作者提供的[Keypoints Labels of MS COCO 2017]

下载完成之后,我们可视化一下:

这是其中的一个txt

 前5个参数就是cls cx cy cw ch  后面就是17个点的坐标和2.0(我也不知道是啥,难道是置信度,还没仔细阅读代码),所以一共加载一起一共17*3+5=56个参数。。。

可视化一下图片:

 2、配置

大家可以使用其他的yaml文件,自己修改即可。。。。。

使用依旧是yolov7-w6.yaml文件

 3、训练

 

太慢了。。。。。。本着训练了那就开始训练吧,,,,


 

### YOLOv7-Pose 架构详解 #### 高效架构设计 YOLOv7-Pose 基于高效的 YOLOv7 深度学习框架构建,在姿态估计任务中展现出卓越性能。此模型不仅继承了 YOLOv7 的快速推理速度,还特别针对人体姿态检测进行了优化,从而实现了高精度的关键点定位[^1]。 #### 关键组件解析 - **骨干网络 (Backbone)** YOLOv7-Pose 使用改进版 CSPDarknet 主干网结构作为基础特征提取器。这种设计有效提升了计算效率并增强了特征表达能力,有助于更精确地捕捉人体各部位的空间位置信息。 - **颈部模块 (Neck Module)** 为了更好地融合多尺度特征,YOLOv7-Pose 引入了一个强大的颈部模块——路径聚合网络(PANet),其作用在于连接低层细节丰富的浅层特征与高层语义强的深层特征,进而提高对复杂场景下人体姿态的理解力和鲁棒性。 - **头部模块 (Head Module)** 头部部分由多个卷积层组成,专门用来预测人体关节的具体坐标及其对应的置信度得分。对于 COCO 数据集而言,默认设置为输出 17 类关键点,每类包含两个空间坐标(x, y)以及一个表示可见性的标志位。 ```python import torch.nn as nn class PoseDetectionHead(nn.Module): def __init__(self, num_keypoints=17): super().__init__() self.conv_layers = nn.Sequential( nn.Conv2d(in_channels=..., out_channels=..., kernel_size=...), ... ) self.keypoint_layer = nn.Conv2d(in_channels=..., out_channels=num_keypoints*3, kernel_size=...) def forward(self, x): features = self.conv_layers(x) keypoints = self.keypoint_layer(features).sigmoid() return keypoints.view(-1, num_keypoints, 3) ``` #### 训练策略 在训练阶段,大量高质量的人体姿态标注数据被用于监督学习过程,使模型逐渐掌握从输入图片到对应姿态描述之间复杂的映射关系。此外,通过精心调整损失函数权重配置等方式进一步提升最终效果。 ---
评论 49
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mrs.Gril

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值