使用LLaMA-Factory训练DeepSeek大模型具体步骤

一、LLaMA-Factory 是否付费?

答案:完全免费
LLaMA-Factory 是开源项目,代码托管于 GitHub,无需付费即可使用。其核心功能包括:

  • 全量微调、LoRA、QLoRA 等训练方法
  • 多模态模型(DeepSeek、Llama、Qwen 等)支持
  • WebUI 和命令行双模式操作

但需注意:

  1. 硬件成本:训练大模型需 GPU 算力(如 4090/A100 显卡),可自建服务器或租用云平台(如优刻得的 4090 显卡按小时计费,约 1.7 元/小时)。
  2. 数据成本:若需标注大规模业务数据,可能产生标注服务费用。

二、DeepSeek 模型使用步骤

1. 环境准备
# 克隆仓库并安装依赖
git clone https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"  # 安装核心依赖
2. 数据准备
  • 数据格式要求

    • Alpaca 格式(推荐)
      [{
          "instruction": "回答用户问题",
          "input": "1+1等于几?",
          "output": "2"
      }]
      
    • ShareGPT 格式(多轮对话)
      [{
          "conversations": [
              {"from": "human", "value": "解释量子计算"},
              {"from": "gpt", "value": "量子计算利用量子比特..."}
          ]
      }]
      
    • 数据存放路径:将数据文件(如 deepseek_data.json)放入 data 文件夹。
  • 配置文件修改
    data/dataset_info.json 中添加 DeepSeek 数据集定义:

    "deepseek_dataset": {
        "file_name": "deepseek_data.json",
        "columns": {
            "prompt": "instruction",
            "query": "input",
            "response": "output"
        }
    }
    
3. 模型配置
  • 下载 DeepSeek 模型
    huggingface-cli download deepseek-ai/deepseek-llm-7b-chat --local-dir ./models
    
  • 启动 WebUI
    llamafactory-cli webui  # 自动打开浏览器界面
    
    • 界面操作
      1. 选择模型路径:./models
      2. 选择数据集:deepseek_dataset
      3. 选择训练方法:LoRA(显存优化)或全量微调(高精度)
      4. 配置参数:学习率(2e-5)、批次大小(根据显存调整)
4. 启动训练
  • 命令行模式(适合批量任务)
    python src/train_bash.py \
        --model_name_or_path ./models \
        --dataset deepseek_dataset \
        --lora_target_modules q_proj v_proj  # 指定注意力层
    
5. 推理与部署
  • 合并 LoRA 权重
    from peft import PeftModel
    model = PeftModel.from_pretrained(model, "./output/lora_weights")
    model = model.merge_and_unload()  # 合并到原始模型
    
  • 启动 API 服务
    python src/api_demo.py \
        --model_name_or_path ./models \
        --checkpoint_dir ./output
    

三、关键优化技巧

  1. 显存不足时的解决方案

    • 4-bit 量化:启用 bitsandbytes 库减少显存占用(需安装预编译版本)
      model = AutoModelForCausalLM.from_pretrained(..., load_in_4bit=True)
      
    • 梯度检查点
      model.gradient_checkpointing_enable()  # 牺牲20%速度换取显存
      
  2. 多 GPU 训练

    accelerate launch --num_processes=4 src/train_bash.py  # 分布式训练
    

四、参考文档

  1. LLaMA-Factory 官方 GitHub
  2. DeepSeek-R1 微调教程
  3. 云平台 GPU 租用指南
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学亮编程手记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值