一、LLaMA-Factory 是否付费?
答案:完全免费
LLaMA-Factory 是开源项目,代码托管于 GitHub,无需付费即可使用。其核心功能包括:
- 全量微调、LoRA、QLoRA 等训练方法
- 多模态模型(DeepSeek、Llama、Qwen 等)支持
- WebUI 和命令行双模式操作
但需注意:
- 硬件成本:训练大模型需 GPU 算力(如 4090/A100 显卡),可自建服务器或租用云平台(如优刻得的 4090 显卡按小时计费,约 1.7 元/小时)。
- 数据成本:若需标注大规模业务数据,可能产生标注服务费用。
二、DeepSeek 模型使用步骤
1. 环境准备
# 克隆仓库并安装依赖
git clone https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]" # 安装核心依赖
2. 数据准备
-
数据格式要求:
- Alpaca 格式(推荐)
[{ "instruction": "回答用户问题", "input": "1+1等于几?", "output": "2" }]
- ShareGPT 格式(多轮对话)
[{ "conversations": [ {"from": "human", "value": "解释量子计算"}, {"from": "gpt", "value": "量子计算利用量子比特..."} ] }]
- 数据存放路径:将数据文件(如
deepseek_data.json
)放入data
文件夹。
- Alpaca 格式(推荐)
-
配置文件修改:
在data/dataset_info.json
中添加 DeepSeek 数据集定义:"deepseek_dataset": { "file_name": "deepseek_data.json", "columns": { "prompt": "instruction", "query": "input", "response": "output" } }
3. 模型配置
- 下载 DeepSeek 模型
huggingface-cli download deepseek-ai/deepseek-llm-7b-chat --local-dir ./models
- 启动 WebUI
llamafactory-cli webui # 自动打开浏览器界面
- 界面操作:
- 选择模型路径:
./models
- 选择数据集:
deepseek_dataset
- 选择训练方法:LoRA(显存优化)或全量微调(高精度)
- 配置参数:学习率(2e-5)、批次大小(根据显存调整)
- 选择模型路径:
- 界面操作:
4. 启动训练
- 命令行模式(适合批量任务)
python src/train_bash.py \ --model_name_or_path ./models \ --dataset deepseek_dataset \ --lora_target_modules q_proj v_proj # 指定注意力层
5. 推理与部署
- 合并 LoRA 权重
from peft import PeftModel model = PeftModel.from_pretrained(model, "./output/lora_weights") model = model.merge_and_unload() # 合并到原始模型
- 启动 API 服务
python src/api_demo.py \ --model_name_or_path ./models \ --checkpoint_dir ./output
三、关键优化技巧
-
显存不足时的解决方案
- 4-bit 量化:启用
bitsandbytes
库减少显存占用(需安装预编译版本)model = AutoModelForCausalLM.from_pretrained(..., load_in_4bit=True)
- 梯度检查点:
model.gradient_checkpointing_enable() # 牺牲20%速度换取显存
- 4-bit 量化:启用
-
多 GPU 训练
accelerate launch --num_processes=4 src/train_bash.py # 分布式训练