算法与数据结构面试宝典——分数背包问题

本文详细介绍了分数背包问题,探讨了如何通过贪心策略按单位价值排序物品,以及算法的实现(Python,C++,Java等语言版本)。文章还分析了时间复杂度为O(n)和空间复杂度为O(n)。通过反证法证明了贪心策略的有效性,并将其与2D图表的面积最大化问题相联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分数背包问题

给定 nnn 个物品,第 iii 个物品的重量为 wgt[i−1]wgt[i-1]wgt[i1]、价值为 val[i−1]val[i-1]val[i1] ,和一个容量为 capcapcap 的背包。每个物品只能选择一次,但可以选择物品的一部分,价值根据选择的重量比例计算,问在不超过背包容量下背包中物品的最大价值。

在这里插入图片描述

分数背包和 0-1 背包整体上非常相似,状态包含当前物品 iii 和容量 ccc ,目标是求不超过背包容量下的最大价值。

不同点在于,本题允许只选择物品的一部分。如下图所示,我们可以对物品任意地进行切分,并按照重量比例来计算物品价值

  1. 对于物品 iii ,它在单位重量下的价值为 val[i−1]/wgt[i−1]val[i-1] / wgt[i-1]val[i1]/wgt[i1] ,简称为单位价值。
  2. 假设放入一部分物品 iii ,重量为 www ,则背包增加的价值为 w×val[i−1]/wgt[i−1]w \times val[i-1] / wgt[i-1]w×val[i1]/wgt[i1]

在这里插入图片描述

贪心策略确定

最大化背包内物品总价值,本质上是要最大化单位重量下的物品价值。由此便可推出下图所示的贪心策略。

  1. 将物品按照单位价值从高到低进行排序。
  2. 遍历所有物品,每轮贪心地选择单位价值最高的物品
  3. 若剩余背包容量不足,则使用当前物品的一部分填满背包即可。

在这里插入图片描述

代码实现

我们建立了一个物品类 Item ,以便将物品按照单位价值进行排序。循环进行贪心选择,当背包已满时跳出并返回解。

=== “Python”

```python title="fractional_knapsack.py"
[class]{Item}-[func]{}

[class]{}-[func]{fractional_knapsack}
```

=== “C++”

```cpp title="fractional_knapsack.cpp"
[class]{Item}-[func]{}

[class]{}-[func]{fractionalKnapsack}
```

=== “Java”

```java title="fractional_knapsack.java"
[class]{Item}-[func]{}

[class]{fractional_knapsack}-[func]{fractionalKnapsack}
```

=== “C#”

```csharp title="fractional_knapsack.cs"
[class]{Item}-[func]{}

[class]{fractional_knapsack}-[func]{fractionalKnapsack}
```

=== “Go”

```go title="fractional_knapsack.go"
[class]{Item}-[func]{}

[class]{}-[func]{fractionalKnapsack}
```

=== “Swift”

```swift title="fractional_knapsack.swift"
[class]{Item}-[func]{}

[class]{}-[func]{fractionalKnapsack}
```

=== “JS”

```javascript title="fractional_knapsack.js"
[class]{Item}-[func]{}

[class]{}-[func]{fractionalKnapsack}
```

=== “TS”

```typescript title="fractional_knapsack.ts"
[class]{Item}-[func]{}

[class]{}-[func]{fractionalKnapsack}
```

=== “Dart”

```dart title="fractional_knapsack.dart"
[class]{Item}-[func]{}

[class]{}-[func]{fractionalKnapsack}
```

=== “Rust”

```rust title="fractional_knapsack.rs"
[class]{Item}-[func]{}

[class]{}-[func]{fractional_knapsack}
```

=== “C”

```c title="fractional_knapsack.c"
[class]{Item}-[func]{}

[class]{}-[func]{fractionalKnapsack}
```

=== “Zig”

```zig title="fractional_knapsack.zig"
[class]{Item}-[func]{}

[class]{}-[func]{fractionalKnapsack}
```

最差情况下,需要遍历整个物品列表,因此时间复杂度为 O(n)O(n)O(n) ,其中 nnn 为物品数量。

由于初始化了一个 Item 对象列表,因此空间复杂度为 O(n)O(n)O(n)

正确性证明

采用反证法。假设物品 xxx 是单位价值最高的物品,使用某算法求得最大价值为 res ,但该解中不包含物品 xxx

现在从背包中拿出单位重量的任意物品,并替换为单位重量的物品 xxx 。由于物品 xxx 的单位价值最高,因此替换后的总价值一定大于 res这与 res 是最优解矛盾,说明最优解中必须包含物品 xxx

对于该解中的其他物品,我们也可以构建出上述矛盾。总而言之,单位价值更大的物品总是更优选择,这说明贪心策略是有效的。

如下图所示,如果将物品重量和物品单位价值分别看作一个 2D 图表的横轴和纵轴,则分数背包问题可被转化为“求在有限横轴区间下的最大围成面积”。这个类比可以帮助我们从几何角度理解贪心策略的有效性。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白话机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值