01.
前言
对于Milvus的开发者和使用者来说,向量数据库的应用场景越来越广泛,但技术深度和问题复杂性也与日俱增。在构建AI应用、机器学习项目时,我们常常面临这样的困境:明明知道解决方案就在某处,却苦于找不到精准的技术指导。每一个Milvus开发者都渴望拥有一个随身的技术顾问,能即时解答向量检索、数据索引、性能优化等关键问题。想象一个完全理解你项目上下文、能秒级响应的专属AI助手,它可以帮助你节省大量技术排查时间,快速解决各种问题。通过构建属于自己的本地技术顾问,让你在使用和开发Milvus的路上更顺利。
02.
手把手构建专属Milvus技术顾问
本环节中将详细介绍如何结合Milvus的数据集和通义本地大模型,构建一个能够理解和回答特定技术问题的AI技术顾问。我们将从零开始,逐步引导完成整个流程,涵盖准备训练数据集、实施微调训练以及评估模型效果等关键环节。通过本实操环节,相信即便是初学者也能成功打造出自己的专属技术顾问,进而显著提高在Milvus项目中的工作效率和创新能力。
说明:本文中忽略一些基础环境配置环节,若需了解请自行研究
2.1.环境要求

2.2.环境准备
检查显卡状态
[root@Qwen-main] nvidia-smi

新建Py虚拟环境并激活
[root@Qwen-main] conda create -n qwen
[root@Qwen-main] conda activate qwen
数据集准备
https://milvus.io/docs/schema.md
本次数据集采用Milvus官方部分文档作为原始数据,保存后等待数据清洗与预处理

Clone项目到本地
注意:QWEN项目支持本地运行的模型列表如下,QWEN2的模型不支持此项目运行
https://github.com/QwenLM/Qwen
(qwen) [root@Qwen-main] git Clone https://github.com/QwenLM/Qwen

下载Qwen-1.8B模型
(qwen) [root@Qwen-main] modelscope download --model Qwen/Qwen-1_8B-Chat
说明:本地模型存储路径
(qwen) [root@Qwen-main] ls /root/.cache/modelscope/hub/Qwen/Qwen-1_8B-Chat/

2.3.开始微调训练
2.3.1.安装Pytorch
注意:请参照Pytorch官方环境版本要求选择安装
(qwen) [root@Qwen-main] pip3 install torch torchvision torchaudio -i https://mirrors.aliyun.com/pypi/simple/

安装QWEN项目所需依赖
(qwen) [root@Qwen-main] pip3 install peft -i https://mirrors.aliyun.com/pypi/simple/